Moshe SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances. Lancet. 2015;385(9971):884–98.
Article
PubMed
Google Scholar
Pitkanen A, Sutula TP. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol. 2002;1(3):173–81.
Article
PubMed
Google Scholar
Breuer LE, Boon P, Bergmans JW, Mess WH, Besseling RM, de Louw A, et al. Cognitive deterioration in adult epilepsy: does accelerated cognitive ageing exist? Neurosci Biobehav Rev. 2016;64:1–11.
Article
CAS
PubMed
Google Scholar
Dingledine R, Varvel NH, Dudek FE. When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv Exp Med Biol. 2014;813:109–22.
Article
PubMed
PubMed Central
Google Scholar
Cendes F, Sakamoto AC, Spreafico R, Bingaman W, Becker AJ. Epilepsies associated with hippocampal sclerosis. Acta Neuropathol. 2014;128(1):21–37.
Article
CAS
PubMed
Google Scholar
Seidenberg M, Kelly KG, Parrish J, Geary E, Dow C, Rutecki P, et al. Ipsilateral and contralateral MRI volumetric abnormalities in chronic unilateral temporal lobe epilepsy and their clinical correlates. Epilepsia. 2005;46(3):420–30.
Article
PubMed
Google Scholar
Kalviainen R, Salmenpera T, Partanen K, Vainio P, Riekkinen P, Pitkanen A. Recurrent seizures may cause hippocampal damage in temporal lobe epilepsy. Neurology. 1998;50(5):1377–82.
Article
CAS
PubMed
Google Scholar
Fuerst D, Shah J, Shah A, Watson C. Hippocampal sclerosis is a progressive disorder: a longitudinal volumetric MRI study. Ann Neurol. 2003;53(3):413–6.
Article
PubMed
Google Scholar
Caciagli L, Bernhardt BC, Hong SJ, Bernasconi A, Bernasconi N. Functional network alterations and their structural substrate in drug-resistant epilepsy. Front Neurosci. 2014;8:411.
Article
PubMed
PubMed Central
Google Scholar
Briellmann RS, Berkovic SF, Syngeniotis A, King MA, Jackson GD. Seizure-associated hippocampal volume loss: a longitudinal magnetic resonance study of temporal lobe epilepsy. Ann Neurol. 2002;51(5):641–4.
Article
PubMed
Google Scholar
Nairismagi J, Grohn OH, Kettunen MI, Nissinen J, Kauppinen RA, Pitkanen A. Progression of brain damage after status epilepticus and its association with epileptogenesis: a quantitative MRI study in a rat model of temporal lobe epilepsy. Epilepsia. 2004;45(9):1024–34.
Article
PubMed
Google Scholar
Lopim GM, Vannucci Campos D, Gomes da Silva S, de Almeida AA, Lent R, Cavalheiro EA, et al. Relationship between seizure frequency and number of neuronal and non-neuronal cells in the hippocampus throughout the life of rats with epilepsy. Brain Res. 2016;1634:179–86.
Article
CAS
PubMed
Google Scholar
Kawata K, Liu CY, Merkel SF, Ramirez SH, Tierney RT, Langford D. Blood biomarkers for brain injury: what are we measuring? Neurosci Biobehav Rev. 2016;68:460–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanabe T, Suzuki S, Hara K, Shimakawa S, Wakamiya E, Tamai H. Cerebrospinal fluid and serum neuron-specific enolase levels after febrile seizures. Epilepsia. 2001;42(4):504–7.
Article
CAS
PubMed
Google Scholar
Rabinowicz AL, Correale J, Boutros RB, Couldwell WT, Henderson CW, DeGiorgio CM. Neuron-specific enolase is increased after single seizures during inpatient video/EEG monitoring. Epilepsia. 1996;37(2):122–5.
Article
CAS
PubMed
Google Scholar
DeGiorgio CM, Gott PS, Rabinowicz AL, Heck CN, Smith TD, Correale JD. Neuron-specific enolase, a marker of acute neuronal injury, is increased in complex partial status epilepticus. Epilepsia. 1996;37(7):606–9.
Article
CAS
PubMed
Google Scholar
Palmio J, Keranen T, Alapirtti T, Hulkkonen J, Makinen R, Holm P, et al. Elevated serum neuron-specific enolase in patients with temporal lobe epilepsy: a video-EEG study. Epilepsy Res. 2008;81(2–3):155–60.
Article
CAS
PubMed
Google Scholar
Fairbanks VF, Ziesmer SC, O'Brien PC. Methods for measuring plasma hemoglobin in micromolar concentration compared. Clin Chem. 1992;38(1):132–40.
Article
CAS
PubMed
Google Scholar
Scheuer ML, Bagic A, Wilson SB. Spike detection: inter-reader agreement and a statistical Turing test on a large data set. Clin Neurophysiol. 2017;128(1):243–50.
Article
PubMed
Google Scholar
Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039–49.
Article
CAS
PubMed
Google Scholar
Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991;88(6):2297–301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yentes JM, Hunt N, Schmid KK, Kaipust JP, McGrath D, Stergiou N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann Biomed Eng. 2013;41(2):349–65.
Article
PubMed
Google Scholar
Curran-Everett D, Benos DJ. Guidelines for reporting statistics in journals published by the American Physiological Society: the sequel. Adv Physiol Educ. 2007;31(4):295–8.
Article
PubMed
Google Scholar
Marangos PJ, Schmechel D, Parma AM, Clark RL, Goodwin FK. Measurement of neuron-specific (NSE) and non-neuronal (NNE) isoenzymes of enolase in rat, monkey and human nervous tissue. J Neurochem. 1979;33(1):319–29.
Article
CAS
PubMed
Google Scholar
Kato K, Suzuki F, Umeda Y. Highly sensitive immunoassays for three forms of rat brain enolase. J Neurochem. 1981;36(3):793–7.
Article
CAS
PubMed
Google Scholar
McAleese SM, Dunbar B, Fothergill JE, Hinks LJ, Day IN. Complete amino acid sequence of the neurone-specific gamma isozyme of enolase (NSE) from human brain and comparison with the non-neuronal alpha form (NNE). Eur J Biochem. 1988;178(2):413–7.
Article
CAS
PubMed
Google Scholar
Rider CC, Taylor CB. Enolase isoenzymes. II. Hybridization studies, developmental and phylogenetic aspects. Biochim Biophys Acta. 1975;405(1):175–87.
Article
CAS
PubMed
Google Scholar
Marangos PJ, Campbell IC, Schmechel DE, Murphy DL, Goodwin FK. Blood platelets contain a neuron-specific enolase subunit. J Neurochem. 1980;34(5):1254–8.
Article
CAS
PubMed
Google Scholar
Casmiro M, Maitan S, De Pasquale F, Cova V, Scarpa E, Vignatelli L, et al. Cerebrospinal fluid and serum neuron-specific enolase concentrations in a normal population. Eur J Neurol. 2005;12(5):369–74.
Article
CAS
PubMed
Google Scholar
Meric E, Gunduz A, Turedi S, Cakir E, Yandi M. The prognostic value of neuron-specific enolase in head trauma patients. J Emerg Med. 2010;38(3):297–301.
Article
PubMed
Google Scholar
Johnsson P, Blomquist S, Luhrs C, Malmkvist G, Alling C, Solem JO, et al. Neuron-specific enolase increases in plasma during and immediately after extracorporeal circulation. Ann Thorac Surg. 2000;69(3):750–4.
Article
CAS
PubMed
Google Scholar
Willert C, Spitzer C, Kusserow S, Runge U. Serum neuron-specific enolase, prolactin, and creatine kinase after epileptic and psychogenic non-epileptic seizures. Acta Neurol Scand. 2004;109(5):318–23.
Article
CAS
PubMed
Google Scholar
Tumani H, Otto M, Gefeller O, Wiltfang J, Herrendorf G, Mogge S, et al. Kinetics of serum neuron-specific enolase and prolactin in patients after single epileptic seizures. Epilepsia. 1999;40(6):713–8.
Article
CAS
PubMed
Google Scholar
Sorci G, Riuzzi F, Arcuri C, Tubaro C, Roberta B, Ileana G, Rosario D. S100B protein in tissue development, repair and regeneration. World J Biol Chem. 2013;4(1):1–12.
Article
PubMed
PubMed Central
Google Scholar
Adami C, Sorci G, Blasi E, Agneletti AL, Glia B-F. S100B expression in and effects on microglia. Glia. 2001;33(2):1–42.
Article
Google Scholar
Marchi N, Granata T, Ghosh C, Epilepsia J-D. Blood–brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia. 2012;53(11):1877–86.
Article
PubMed
PubMed Central
Google Scholar
Selvitelli MF, Walker LM, Schomer DL, Chang BS. The relationship of interictal epileptiform discharges to clinical epilepsy severity: a study of routine EEGs and review of the literature. J Clin Neurophysiol. 2010;27(2):87–92.
Article
PubMed
PubMed Central
Google Scholar
Yardi R, Bulacio J, Bingaman W, Gonzalez-Martinez J, Najm I, Jehi L. Interictal spikes onintracranial eeg as a potential biomarker of epilepsy severity (p4. 071): AAN Enterprises; 2016.
Google Scholar
Loscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev. 2010;62(4):668–700.
Article
PubMed
PubMed Central
CAS
Google Scholar
Holmes GL. Cognitive impairment in epilepsy: the role of network abnormalities. Epileptic Disord. 2015;17(2):101–16.
PubMed
PubMed Central
Google Scholar
Barker-Haliski M, Spring W-HS. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring HArb Perspect Med. 2015;5(8):a022863.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sen A, Capelli V, Brain H-M. Cognition and dementia in older patients with epilepsy. Brain. 2018;141(6):1592–608.
Article
PubMed
PubMed Central
Google Scholar
Howe CL, LaFrance-Corey RG, Mirchia K, Sauer BM, McGovern RM, Reid JM, et al. Neuroprotection mediated by inhibition of calpain during acute viral encephalitis. Sci Rep. 2016;6:28699.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lam PM, Carlsen J, Gonzalez MI. A calpain inhibitor ameliorates seizure burden in an experimental model of temporal lobe epilepsy. Neurobiol Dis. 2017;102:1–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Araujo IM, Gil JM, Carreira BP, Mohapel P, Petersen A, Pinheiro PS, et al. Calpain activation is involved in early caspase-independent neurodegeneration in the hippocampus following status epilepticus. J Neurochem. 2008;105(3):666–76.
Article
CAS
PubMed
Google Scholar
Wang Y, Wang D, Guo D. Interictal cytokine levels were correlated to seizure severity of epileptic patients: a retrospective study on 1218 epileptic patients. J Transl Med. 2015;13(1):378.
Article
PubMed
PubMed Central
CAS
Google Scholar