Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475–82. https://doi.org/10.1111/epi.12550.
Article
PubMed
Google Scholar
Chen T, Wang Y, He Z, Yu S, Shu H, Kuang Y. Progress in the study of the role of HMGB1 in the pathogenesis of epilepsy. Chin J Na. 2018;34(05):643–6.
CAS
Google Scholar
Pascente R, Frigerio F, Rizzi M, Porcu L, Boido M, Davids J, et al. Cognitive deficits and brain myo-inositol are early biomarkers of epileptogenesis in a rat model of epilepsy. Neurobiol Dis. 2016;93:146–55. https://doi.org/10.1016/j.nbd.2016.05.001.
Article
CAS
PubMed
Google Scholar
Liu AH, Chu M, Wang YP. Up-regulation of Trem2 inhibits hippocampal neuronal apoptosis and alleviates oxidative stress in epilepsy via the PI3K/Akt pathway in mice. Neurosci Bull. 2019;35(3):471–85. https://doi.org/10.1007/s12264-018-0324-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu B, Yuan B, Dai JK, Cheng TL, Xia SN, He LJ, et al. Reversal of social recognition deficit in adult mice with MECP2 duplication via normalization of MeCP2 in the medial prefrontal cortex. Neurosci Bull. 2020;36(6):570–84. https://doi.org/10.1007/s12264-020-00467-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fei F, Wang X, Wang Y, Chen Z. Dissecting the role of subiculum in epilepsy: research update and translational potential. Prog Neurobiol. 2021;201:102029. https://doi.org/10.1016/j.pneurobio.2021.102029.
Article
PubMed
Google Scholar
Iori V, Frigerio F, Vezzani A. Modulation of neuronal excitability by immune mediators in epilepsy. Curr Opin Pharmacol. 2016;26:118–23. https://doi.org/10.1016/j.coph.2015.11.002.
Article
CAS
PubMed
Google Scholar
Paudel YN, Shaikh MF, Shah S, Kumari Y, Othman I. Role of inflammation in epilepsy and neurobehavioral comorbidities: implication for therapy. Eur J Pharmacol. 2018;837:145–55. https://doi.org/10.1016/j.ejphar.2018.08.020.
Article
CAS
PubMed
Google Scholar
Van Vliet EA, Aronica E, Vezzani A, Ravizza T. Review: Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: emerging evidence from preclinical and clinical studies. Neuropathol Appl Neurobiol. 2018;44(1):91–111. https://doi.org/10.1111/nan.12444.
Article
PubMed
Google Scholar
Stros M. HMGB proteins: interactions with DNA and chromatin. Biochim Biophys Acta. 2010;1799(1–2):101–13. https://doi.org/10.1016/j.bbagrm.2009.09.008.
Article
CAS
PubMed
Google Scholar
Ulloa L, Messmer D. High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev. 2006;17(3):189–201. https://doi.org/10.1016/j.cytogfr.2006.01.003.
Article
CAS
PubMed
Google Scholar
Bustin M. Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci. 2001;26(3):152–3. https://doi.org/10.1016/S0968-0004(00)01777-1.
Article
CAS
PubMed
Google Scholar
Naglova H, Bucova M. HMGB1 and its physiological and pathological roles. Bratisl Lek Listy. 2012;113(3):163–71. https://doi.org/10.4149/bll_2012_039.
Article
CAS
PubMed
Google Scholar
Venereau E, De Leo F, Mezzapelle R, Careccia G, Musco G, Bianchi ME. HMGB1 as biomarker and drug target. Pharmacol Res. 2016;111:534–44. https://doi.org/10.1016/j.phrs.2016.06.031.
Article
CAS
PubMed
Google Scholar
Xie Y, Yu N, Chen Y, Zhang K, Ma HY, Di Q. HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway. Mol Med Rep. 2017;16(2):1691–700. https://doi.org/10.3892/mmr.2017.6772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paudel YN, Shaikh MF, Chakraborti A, Kumari Y, Aledo-Serrano Á, Aleksovska K, et al. HMGB1: a common biomarker and potential target for TBI, Neuroinflammation, epilepsy, and cognitive dysfunction. Front Neurosci. 2018;12:628. https://doi.org/10.3389/fnins.2018.00628.
Article
PubMed
PubMed Central
Google Scholar
Zurolo E, Iyer A, Maroso M, Carbonell C, Anink JJ, Ravizza T, et al. Activation of toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain. 2011;134(Pt 4):1015–32. https://doi.org/10.1093/brain/awr032.
Article
PubMed
Google Scholar
Zhang Z, Liu Q, Liu M, Wang H, Dong Y, Ji T, et al. Upregulation of HMGB1-TLR4 inflammatory pathway in focal cortical dysplasia type II. J Neuroinflammation. 2018;15(1):27. https://doi.org/10.1186/s12974-018-1078-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han Y, Yang L, Liu X, Feng Y, Pang Z, Lin Y. HMGB1/CXCL12-mediated immunity and Th17 cells might underlie highly suspected autoimmune epilepsy in elderly individuals. Neuropsychiatr Dis Treat. 2020;16:1285–93. https://doi.org/10.2147/NDT.S242766.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ai P, Zhang X, Xie Z, Liu G, Liu X, Pan S, et al. The HMGB1 is increased in CSF of patients with an anti-NMDAR encephalitis. Acta Neurol Scand. 2018;137(2):277–82. https://doi.org/10.1111/ane.12850.
Article
CAS
PubMed
Google Scholar
Lauren W, Karen T, Emanuele R, Thimmasettappa T, Graeme J, Steve H, et al. High mobility group box 1 in the inflammatory pathogenesis of epilepsy: profiling circulating levels after experimental and clinical seizures. Lancet. 2014;383(Suppl 1):S105.
Google Scholar
Kan M, Song L, Zhang X, Zhang J, Fang P. Circulating high mobility group box-1 and toll-like receptor 4 expressions increase the risk and severity of epilepsy. Braz J Med Biol Res. 2019;52(7):e7374. https://doi.org/10.1590/1414-431x20197374.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao J, Wang Y, Xu C, Liu K, Wang Y, Chen L, et al. Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy. Brain Behav Immun. 2017;64:308–19. https://doi.org/10.1016/j.bbi.2017.02.002.
Article
CAS
PubMed
Google Scholar
Shi Y, Zhang L, Teng J, Miao W. HMGB1 mediates microglia activation via the TLR4/NF-κB pathway in coriaria lactone induced epilepsy. Mol Med Rep. 2018;17(4):5125–31. https://doi.org/10.3892/mmr.2018.8485.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med. 2010;16(4):413–9. https://doi.org/10.1038/nm.2127.
Article
CAS
PubMed
Google Scholar
Huang JS, Wu Y, Huang Q, Li SJ, Ye JM, Wei X, et al. Expression level and distribution of HMGB1 in Sombati's cell model and kainic acid-induced epilepsy model. Eur Rev Med Pharmacol Sci. 2015;19(15):2928–33.
PubMed
Google Scholar
Liu AH, Wu YT, Wang YP. MicroRNA-129-5p inhibits the development of autoimmune encephalomyelitis-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway. Brain Res Bull. 2017;132:139–49. https://doi.org/10.1016/j.brainresbull.2017.05.004.
Article
CAS
PubMed
Google Scholar
Zhao J, Zheng Y, Liu K, Chen J, Lai N, Fei F, et al. HMGB1 is a therapeutic target and biomarker in diazepam-refractory status epilepticus with wide time window. Neurotherapeutics. 2020 Apr;17(2):710–21. https://doi.org/10.1007/s13311-019-00815-3.
Article
CAS
PubMed
Google Scholar
Fu L, Liu K, Wake H, Teshigawara K, Yoshino T, Takahashi H, et al. Therapeutic effects of anti-HMGB1 monoclonal antibody on pilocarpine-induced status epilepticus in mice. Sci Rep. 2017;7(1):1179. https://doi.org/10.1038/s41598-017-01325-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Li B, Zhu X, Yin P, Liu J, Huang S, et al. Neuroprotective effects of anti-high-mobility group box 1 antibody in juvenile rat hippocampus after kainic acid-induced status epilepticus. Neuroreport. 2013;24(14):785–90. https://doi.org/10.1097/WNR.0b013e328363fed3.
Article
CAS
PubMed
Google Scholar
Luo L, Jin Y, Kim ID, Lee JK. Glycyrrhizin attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. Exp Neurobiol. 2013;22(2):107–15. https://doi.org/10.5607/en.2013.22.2.107.
Article
PubMed
PubMed Central
Google Scholar
Luo L, Jin Y, Kim ID, Lee JK. Glycyrrhizin suppresses HMGB1 inductions in the hippocampus and subsequent accumulation in serum of a kainic acid-induced seizure mouse model. Cell Mol Neurobiol. 2014;34(7):987–97. https://doi.org/10.1007/s10571-014-0075-4.
Article
CAS
PubMed
Google Scholar
Li YJ, Wang L, Zhang B, Gao F, Yang CM. Glycyrrhizin, an HMGB1 inhibitor, exhibits neuroprotective effects in rats after lithium-pilocarpine-induced status epilepticus. J Pharm Pharmacol. 2019;71(3):390–9. https://doi.org/10.1111/jphp.13040.
Article
CAS
PubMed
Google Scholar
Morales-Sosa M, Orozco-Suárez S, Vega-García A, Caballero-Chacón S, Feria-Romero IA. Immunomodulatory effect of celecoxib on HMGB1/TLR4 pathway in a recurrent seizures model in immature rats. Pharmacol Biochem Behav. 2018;170:79–86. https://doi.org/10.1016/j.pbb.2018.05.007.
Article
CAS
PubMed
Google Scholar
Yu S, Zhang H, Hei Y, Yi X, Baskys A, Liu W, et al. High mobility group box-1 (HMGB1) antagonist BoxA suppresses status epilepticus-induced neuroinflammatory responses associated with toll-like receptor 2/4 down-regulation in rats. Brain Res. 1717;2019:44–51.
Google Scholar
Branco-Madeira F, Lambrecht BN. High mobility group box-1 recognition: the beginning of a RAGEless era? EMBO Mol Med. 2010;2(6):193–5. https://doi.org/10.1002/emmm.201000077.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng A, He S, Zhu X, Qiu X, Zhang L, Lai W, et al. Advances in the study of inflammation in the pathogenesis of epilepsy. J Epilepsy. 2018;4(01):36–9.
Google Scholar
Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, et al. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain. 2019;142(7):e39. https://doi.org/10.1093/brain/awz130.
Article
PubMed
PubMed Central
Google Scholar
Musumeci D, Roviello GN, Montesarchio D. An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther. 2014;141(3):347–57. https://doi.org/10.1016/j.pharmthera.2013.11.001.
Article
CAS
PubMed
Google Scholar
Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, et al. Endogenous HMGB1 regulates autophagy. J Cell Biol. 2010;190(5):881–92. https://doi.org/10.1083/jcb.200911078.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris HE, Andersson U, Pisetsky DS. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol. 2012;8(4):195–202. https://doi.org/10.1038/nrrheum.2011.222.
Article
CAS
PubMed
Google Scholar
Ravizza T, Terrone G, Salamone A, Frigerio F, Balosso S, Antoine DJ, et al. High mobility group box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav Immun. 2018;72:14–21. https://doi.org/10.1016/j.bbi.2017.10.008.
Article
CAS
PubMed
Google Scholar
Iori V, Iyer AM, Ravizza T, Beltrame L, Paracchini L, Marchini S, et al. Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol Dis. 2017;99:12–23. https://doi.org/10.1016/j.nbd.2016.12.007.
Article
CAS
PubMed
Google Scholar
Kleen JK, Holmes GL. Taming TLR4 may ease seizures. Nat Med. 2010;16(4):369–70. https://doi.org/10.1038/nm0410-369.
Article
CAS
PubMed
Google Scholar
Maroso M, Balosso S, Ravizza T, Liu J, Bianchi ME, Vezzani A. Interleukin-1 type 1 receptor/toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J Intern Med. 2011;270(4):319–26. https://doi.org/10.1111/j.1365-2796.2011.02431.x.
Article
CAS
PubMed
Google Scholar
Yang H, Wang H, Andersson U. Targeting inflammation driven by HMGB1. Front Immunol. 2020;11:484. https://doi.org/10.3389/fimmu.2020.00484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aronica E, Crino PB. Inflammation in epilepsy: clinical observations. Epilepsia. 2011;52(Suppl 3):26–32. https://doi.org/10.1111/j.1528-1167.2011.03033.x.
Article
PubMed
Google Scholar
Blümcke I, Vinters HV, Armstrong D, Aronica E, Thom M, Spreafico R. Malformations of cortical development and epilepsies: neuropathological findings with emphasis on focal cortical dysplasia. Epileptic Disord. 2009;11(3):181–93. https://doi.org/10.1684/epd.2009.0261.
Article
PubMed
Google Scholar
Yang W, Li J, Shang Y, Zhao L, Wang M, Shi J, et al. HMGB1-TLR4 Axis plays a regulatory role in the pathogenesis of mesial temporal lobe epilepsy in immature rat model and children via the p38MAPK signaling pathway. Neurochem Res. 2017;42(4):1179–90. https://doi.org/10.1007/s11064-016-2153-0.
Article
CAS
PubMed
Google Scholar
Iori V, Maroso M, Rizzi M, Iyer AM, Vertemara R, Carli M, et al. Receptor for advanced glycation Endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiol Dis. 2013;58:102–14. https://doi.org/10.1016/j.nbd.2013.03.006.
Article
CAS
PubMed
Google Scholar
Balosso S, Liu J, Bianchi ME, Vezzani A. Disulfide-containing high mobility group box-1 promotes N-methyl-D-aspartate receptor function and excitotoxicity by activating toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid Redox Signal. 2014;21(12):1726–40. https://doi.org/10.1089/ars.2013.5349.
Article
CAS
PubMed
Google Scholar
Chiavegato A, Zurolo E, Losi G, Aronica E, Carmignoto G. The inflammatory molecules IL-1β and HMGB1 can rapidly enhance focal seizure generation in a brain slice model of temporal lobe epilepsy. Front Cell Neurosci. 2014;8:155.
Article
Google Scholar
Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36(3):174–84. https://doi.org/10.1016/j.tins.2012.11.008.
Article
CAS
PubMed
Google Scholar
De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, et al. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci. 2000;12(7):2623–33. https://doi.org/10.1046/j.1460-9568.2000.00140.x.
Article
PubMed
Google Scholar
Boer K, Spliet WG, van Rijen PC, Redeker S, Troost D, Aronica E. Evidence of activated microglia in focal cortical dysplasia. J Neuroimmunol. 2006;173(1–2):188–95. https://doi.org/10.1016/j.jneuroim.2006.01.002.
Article
CAS
PubMed
Google Scholar
Ravizza T, Boer K, Redeker S, Spliet WG, van Rijen PC, Troost D, et al. The IL-1beta system in epilepsy-associated malformations of cortical development. Neurobiol Dis. 2006;24(1):128–43. https://doi.org/10.1016/j.nbd.2006.06.003.
Article
CAS
PubMed
Google Scholar
Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis. 2008;29(1):142–60. https://doi.org/10.1016/j.nbd.2007.08.012.
Article
CAS
PubMed
Google Scholar
Richard S, Min W, Su Z, Xu H. High mobility group box 1 and traumatic brain injury. J Behav Brain Sci. 2017;7(02):50–61. https://doi.org/10.4236/jbbs.2017.72006.
Article
CAS
Google Scholar
Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT, Taxman DJ, et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol. 2009;183(3):2008–15. https://doi.org/10.4049/jimmunol.0900138.
Article
CAS
PubMed
Google Scholar
Lamkanfi M, Sarkar A, Vande Walle L, Vitari AC, Amer AO, Wewers MD, et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J Immunol. 2010;185(7):4385–92. https://doi.org/10.4049/jimmunol.1000803.
Article
CAS
PubMed
Google Scholar
Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285(5425):248–51. https://doi.org/10.1126/science.285.5425.248.
Article
CAS
PubMed
Google Scholar
Rendon-Mitchell B, Ochani M, Li J, Han J, Wang H, Yang H, et al. IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanism. J Immunol. 2003;170(7):3890–7. https://doi.org/10.4049/jimmunol.170.7.3890.
Article
CAS
PubMed
Google Scholar
Lu B, Antoine DJ, Kwan K, Lundbäck P, Wähämaa H, Schierbeck H, et al. JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci U S A. 2014;111(8):3068–73. https://doi.org/10.1073/pnas.1316925111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frank MG, Weber MD, Fonken LK, Hershman SA, Watkins LR, Maier SF. The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: a role for the NLRP3 inflammasome. Brain Behav Immun. 2016;55:215–24. https://doi.org/10.1016/j.bbi.2015.10.009.
Article
CAS
PubMed
Google Scholar
Andersson U, Yang H, Harris H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Expert Opin Ther Targets. 2018;22(3):263–77. https://doi.org/10.1080/14728222.2018.1439924.
Article
CAS
PubMed
Google Scholar
Nishibori M, Wang D, Ousaka D, Wake H. High mobility group Box-1 and blood-brain barrier disruption. Cells. 2020;9(12):2650. https://doi.org/10.3390/cells9122650.
Article
CAS
PubMed Central
Google Scholar
Zhang J, Takahashi HK, Liu K, Wake H, Liu R, Maruo T, et al. Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke. 2011;42(5):1420–8. https://doi.org/10.1161/STROKEAHA.110.598334.
Article
CAS
PubMed
Google Scholar
van Vliet EA, da Costa AS, Redeker S, van Schaik R, Aronica E, Gorter JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007;130(Pt 2):521–34. https://doi.org/10.1093/brain/awl318.
Article
PubMed
Google Scholar
Wykes RC, Heeroma JH, Mantoan L, Zheng K, MacDonald DC, Deisseroth K, et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med. 2012;4(161):161ra152.
Article
Google Scholar