Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21:67–84.
Article
CAS
PubMed
Google Scholar
Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014;24:90–9.
Article
CAS
PubMed
Google Scholar
Morin LP, Allen CN. The circadian visual system. Brain Res Rev. 2006;51:1–60.
Article
CAS
PubMed
Google Scholar
Wang Z, Wang H, Wang Z, He S, Jiang Z, Yan C, et al. Associated analysis of PER1/TUBB2B with endometrial cancer development caused by circadian rhythm disorders. Med Oncol. 2020;37:90.
Article
CAS
PubMed
Google Scholar
Duncan MJ, Smith JT, Franklin KM, Beckett TL, Murphy MP, St Clair DK, et al. Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer’s disease. Exp Neurol. 2012;236:249–58.
Article
CAS
PubMed
Google Scholar
Satyanarayanan SK, Su H, Lin YW, Su KP. Circadian rhythm and melatonin in the treatment of depression. Curr Pharm Des. 2018;24:2549–55.
Article
CAS
PubMed
Google Scholar
Strine TW, Kobau R, Chapman DP, Thurman DJ, Price P, Balluz LS. Psychological distress, comorbidities and health behaviors among US adults with seizures: results from the 2002 National Health Interview Survey. Epilepsia. 2005;46:1133–9.
Article
PubMed
Google Scholar
Brodie MJ, Barry SJ, Bamagous GA, Norrie JD, Kwan P. Patterns of treatment response in newly diagnosed epilepsy. Neurology. 2012;78:1548–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kothare SV, Kaleyias J. Sleep and epilepsy in children and adolescents. Sleep Med. 2010;11:674–85.
Article
PubMed
Google Scholar
Ardura J, Andres J, Garmendia JR, Ardura F. Melatonin in epilepsy and febrile seizures. J Child Neurol. 2010;25:888–91.
Article
PubMed
Google Scholar
Gerstner JR, Smith GG, Lenz O, Perron IJ, Buono RJ, Ferraro TN. BMAL1 controls the diurnal rhythm and set point for electrical seizure threshold in mice. Front Syst Neurosci. 2014;8:121.
Article
PubMed
PubMed Central
Google Scholar
Pung T, Schmitz B. Circadian rhythm and personality profile in juvenile myoclonic epilepsy. Epilepsia. 2006;47:111–4.
Article
PubMed
Google Scholar
Quigg M. Circadian rhythms: interactions with seizures and epilepsy. Epilepsy Res. 2000;42:43–55.
Article
CAS
PubMed
Google Scholar
Khan S, Nobili L, Khatami R, Loddenkemper T, Cajochen C, Dijk DJ, et al. Circadian rhythm and epilepsy. Lancet Neurol. 2018;17:1098–108.
Article
PubMed
Google Scholar
Jin B, Aung T, Geng Y, Wang S. Epilepsy and its interaction with sleep and circadian rhythm. Front Neurol. 2020;8(11):327.
Article
Google Scholar
Herman ST, Walczak TS, Bazil CW. Distribution of partial seizures during the sleep-wake cycle: differences by seizure onset site. Neurology. 2001;56:1453–9.
Article
CAS
PubMed
Google Scholar
Mendez M, Radtke RA. Interactions between sleep and epilepsy. J Clin Neurophysiol. 2001;18:106–27.
Article
CAS
PubMed
Google Scholar
Minecan D, Natarajan A, Marzec M, Malow B. Relationship of epileptic seizures to sleep stage and sleep depth. Sleep. 2002;25:56–61.
Article
Google Scholar
Spencer DC, Sun FT, Brown SN, Jobst BC, Fountain NB, Wong VS, et al. Circadian and ultradian patterns of epileptiform discharges differ by seizure-onset location during long-term ambulatory intracranial monitoring. Epilepsia. 2016;57:1495–502.
Article
CAS
PubMed
Google Scholar
Anderson C, Tcheng T, Sun F, Morrell M. Day–night patterns of epileptiform activity in 65 patients with long-term ambulatory electrocorticography. J Clin Neurophysiol. 2015;32:406–12.
Article
PubMed
Google Scholar
Sammaritano M, Gigli GL, Gotman J. Interictal spikes during wakefulness and sleep and localization of foci in temporal lobe epilepsy. Neurology. 1991;41:290–7.
Article
CAS
PubMed
Google Scholar
Ng M, Pavlova M. Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages. Epilepsy Res Treat. 2013;2013:932790.
PubMed
PubMed Central
Google Scholar
Okanari K, Baba S, Otsubo H, Widjaja E, Sakuma S, Go CY, et al. Rapid eye movement sleep reveals epileptogenic spikes for resective surgery in children with generalized interictal discharges. Epilepsia. 2015;56:1445–53.
Article
PubMed
Google Scholar
Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993;262:679–85.
Article
CAS
PubMed
Google Scholar
Ferrillo F, Beelke M, Nobili L. Sleep EEG synchronization mechanisms and activation of interictal epileptic spikes. Clin Neurophysiol. 2000;111:S65–73.
Article
PubMed
Google Scholar
Shouse MN, Siegel JM, Szymusiak WMF, R, Morrison AR. Mechanisms of seizure suppression during rapid-eye movement sleep in cats. Brain Res. 1989;505:271–82.
Article
CAS
PubMed
Google Scholar
McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortexand their role in neuromodulation of thalamocortical activity. Prog Neurobiol. 1992;39:317–88.
Article
Google Scholar
De Weerd A, de Haas S, Otte A, Trenite DK, van Erp G, Cohen A, et al. Subjective sleep disturbance in patients with partial epilepsy: a questionnaire–based study on prevalence and impact on quality of life. Epilepsia. 2004;45:1397–404.
Article
PubMed
Google Scholar
Meletti S, Cantalupo G, Volpi L, Rubboli G, Magaudda A, Tassinari CA. Rhythmic teeth grinding induced by temporal lobe seizures. Neurology. 2004;62:2306–9.
Article
CAS
PubMed
Google Scholar
Fountain NB, Kim JS, Lee SI. Sleep deprivation activates epileptiform discharges independent of the activating effects of sleep. J Clin Neurophysiol. 1998;15:69–75.
Article
CAS
PubMed
Google Scholar
Dell KL, Payne DE, Kremen V, Maturana MI, Gerla V, Nejedly P, et al. Seizure likelihood varies with day-to-day variations in sleep duration in patients with refractory focal epilepsy: A longitudinal electroencephalography investigation. EClinicalMedicine. 2021;37:100934.
Article
PubMed
PubMed Central
Google Scholar
Miano S, PiaVilla M, Blanco D, Zamora E, Rodriguez R, Ferri R, et al. Development of NREM sleep instability-continuity (cyclic alternating pattern) in healthy term infants aged 1 to 4 months. Sleep. 2009;32:83–90.
PubMed
PubMed Central
Google Scholar
Bazil CW, Walczak TS. Effects of sleep and sleep stage on epileptic and nonepileptic seizures. Epilepsia. 1997;38:56–62.
Article
CAS
PubMed
Google Scholar
Herman ST, Walczak TS, Bazil CW. Distribution of partial seizures during the sleep-wake cycle: differences by seizures onset site. Neurology. 2001;56:1453–8.
Article
CAS
PubMed
Google Scholar
Pavlova MK, Shea SA, Scheer FA, Bromfield EB. Is there a circadian variation of epileptiform abnormalities in idiopathic generalized epilepsy? Epilepsy Behav. 2009;16:461–7.
Article
PubMed
Google Scholar
Raedt R, Van Dycke A, Van Melkebeke D, De Smedt T, Claeys P, Wyckhuys T, et al. Seizures in the intrahippocampal kainic acid epilepsy model: characterization using long-term video-EEG monitoring in the rat. Acta Neurol Scand. 2009;119:293–303.
Article
CAS
PubMed
Google Scholar
Quigg M, Straume M, Menaker M, Bertram EH III. Temporal distribution of partial seizures: comparison of an animal model with human partial epilepsy. Ann Neurol. 1998;43:748–55.
Article
CAS
PubMed
Google Scholar
Stewart LS, Bercovici E, Shukla R, Serbanescu I, Persad V, Mistry N, et al. Daily rhythms of seizure activity and behavior in a model of atypical absence epilepsy. Epilepsy Behav. 2006;9:564–72.
Article
PubMed
Google Scholar
Stewart LS, Nylen KJ, Persinger MA, Cortez MA, Gibson KM, Snead OC III. Circadian distribution of generalized tonic-clonic seizures associated with murine succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism. Epilepsy Behav. 2008;13:290–4.
Article
PubMed
PubMed Central
Google Scholar
Smyk MK, Coenen AM, Lewandowski MH, van Luijtelaar G. Endogenous rhythm of absence epilepsy: relationship with general motor activity and sleep-wake states. Epilepsy Res. 2011;93:120–7.
Article
PubMed
Google Scholar
Gurkas E, Serdaroglu A, Hirfanoglu T, Kartal A, Yilmaz U, Bilir E. Sleepwake distribution and circadian patterns of epileptic seizures in children. Eur J Paediatr Neurol. 2016;20:549–54.
Article
PubMed
Google Scholar
Baud MO, Kleen JK, Mirro EA, Andrechak JC, King-Stephens D, Chang EF, et al. Multi-day rhythms modulate seizure risk in epilepsy. Nat Commun. 2018;9:88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baud MO, Ghestem A, Benoliel JJ, Becker C, Bernard C. Endogenous multidien rhythm of epilepsy in rats. Exp Neurol. 2019;315:82–7.
Article
PubMed
Google Scholar
van Campen JS, Valentijn FA, Jansen FE, Joëls M, Braun KP. Seizure occurrence and the circadian rhythm of cortisol: a systematic review. Epilepsy Behav. 2015;47:132–7.
Article
PubMed
Google Scholar
Ramgopal S, Powell C, Zarowski M, Alexopoulos AV, Kothare SV, Loddenkemper T. Predicting diurnal and sleep/wake seizure patterns in paediatric patients of different ages. Epileptic Disord. 2014;16:56–66.
Article
PubMed
Google Scholar
Zarowski M, Loddenkemper T, Vendrame M, Alexopoulos AV, Wyllie E, Kothare SV. Circadian distribution and sleep/wake patterns of generalized seizures in children. Epilepsia. 2011;52:1076–83.
Article
PubMed
Google Scholar
Durazzo TS, Spencer SS, Duckrow RB, Novotny EJ, Spencer DD, Zaveri HP. Temporal distributions of seizure occurrence from various epileptogenic regions. Neurology. 2008;70:1265–71.
Article
CAS
PubMed
Google Scholar
Nzwalo H, Menezes Cordeiro I, Santos AC, Peralta R, Paiva T, Bentes C. 24-hour rhythmicity of seizures in refractory focal epilepsy. Epilepsy Behav. 2015;55:75–8.
Article
Google Scholar
Pitsch J, Becker AJ, Schoch S, Müller JA, Curtis M, Gnatkovsky V. Circadian clustering of spontaneous epileptic seizures emerges after pilocarpine-induced status epilepticus. Epilepsia. 2017;58:1159–71.
Article
CAS
PubMed
Google Scholar
Hofstra WA, Spetgens WP, Leijten FS, van Rijen PC, Gosselaar P, van der Palen J, et al. Diurnal rhythms in seizures detected by intracranial electrocorticographic monitoring: an observational study. Epilepsy Behavior. 2009;14:617–21.
Article
PubMed
Google Scholar
Halasz P. Sleep and epilepsy. Handb Clin Neurol. 2012;107:305–22.
Article
PubMed
Google Scholar
Bazil CW. Nocturnal seizures. Semin Neurol. 2004;24:293–300.
Article
PubMed
Google Scholar
Badawy RA, MacDonell RA, Jackson GD, Berkovic SF. Why do seizures in generalized epilepsy often occur in the morning? Neurology. 2009;73:218–22.
Article
CAS
PubMed
Google Scholar
Xu L, Guo D, Liu YY, Qiao DD, Ye JY, Xue R. Juvenile myoclonic epilepsy and sleep. Epilepsy Behav. 2018;80:326–30.
Article
PubMed
Google Scholar
Guerrini R, Pellacani S. Benign childhood focal epilepsies. Epilepsia. 2012;53:9–18.
Article
PubMed
Google Scholar
Fejerman N. Atypical rolandic epilepsy. Epilepsia. 2009;50:9–12.
Article
PubMed
Google Scholar
Halasz P, Bodizs R, Ujma PP, Fabo D, Szucs A. Strong relationship between NREM sleep, epilepsy and plastic functions-a conceptual review on the neurophysiology background. Epilepsy Res. 2019;150:95–105.
Article
PubMed
Google Scholar
Baglietto MG, Battaglia FM, Nobili L, Tortorelli S, De Negri E, Calevo MG, et al. Neuropsychological disorders related to Interictal epileptic discharges during sleep in benign epilepsy of childhood with centrotemporal or rolandic spikes. Dev Med Child Neurol. 2001;43:407–12.
Article
CAS
PubMed
Google Scholar
Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol. 2015;6:22.
Article
PubMed
PubMed Central
Google Scholar
Combi R, Dalprà L, Tenchini ML, Ferini-Strambi L. Autosomal dominant nocturnal frontal lobe epilepsy-a critical overview. J Neurol. 2004;251:923–34.
CAS
PubMed
Google Scholar
Fucile S. Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium. 2004;35:1–8.
Article
CAS
PubMed
Google Scholar
Conroy J, McGettigan PA, McCreary D, Shah N, Collins K, Parry-Fielder B, et al. Towards the identification of a genetic basis for Landau-Kleffner syndrome. Epilepsia. 2014;55:858–65.
Article
CAS
PubMed
Google Scholar
Datta AN, Oser N, Ramelli GP, Zanda Gobbin N, Lantz G, Penner IK, et al. BECTS evolving to Landau-Kleffner syndrome and back by subsequent recovery: A longitudinal language reorganization case study using fMRI, source EEG, and neuropsychological testing. Epilepsy Behavior. 2013;27:107–14.
Article
CAS
PubMed
Google Scholar
Riccio CA, Vidrine SM, Cohen MJ, Acosta-Cotte D, Park Y. Neurocognitive and behavioral profiles of children with Landau-Kleffner syndrome. Appl Neuropsychol Child. 2017;6:345–54.
Article
PubMed
Google Scholar
Ramanathan RS, Ahluwalia T, Sharma A. Landau-Kleffner syndrome-a rare experience. East J Med. 2012;17:36–9.
Google Scholar
Tsai ML, Lo HY, Chaou WT. Clinical and electroencephalographic findings in early and late onset benign childhood epilepsy with occipital paroxysms. Brain and Development. 2001;23:401–5.
Article
CAS
PubMed
Google Scholar
Vaughn BV, D’ Cruz OF. Sleep and epilepsy. Semin Neurol. 2004;24:301–13.
Article
PubMed
Google Scholar
Matos G, Andersen ML, do Valle AC, Tufifik S. The relationship between sleep and epilepsy: evidence from clinical trials and animal models. J Neurol Sci. 2010;295:1–7.
Article
PubMed
Google Scholar
Mekky JF, Elbhrawy SM, Boraey MF, Omar HM. Sleep architecture in patients with juvenile myoclonic epilepsy. Sleep Med. 2017;38:116–21.
Article
PubMed
Google Scholar
Bazil CW, Castro IH, Walczak TS. Reduction of rapid eye movement sleep by diurnal and nocturnal seizures in temporal lobe epilepsy. Arch Neurol. 2000;57:363–8.
Article
CAS
PubMed
Google Scholar
Becker DA, Fennell EB, Carney PR. Sleep disturbance in children with epilepsy. Epilepsy Behav. 2003;4:651–8.
Article
PubMed
Google Scholar
De Paolis F, Colizzi E, Milioli G, Grassi A, Riccardi S, Puligheddu M, et al. Effects of antiepileptic treatment on sleep and seizures in nocturnal frontal lobe epilepsy. Sleep Med. 2013;14:597–604.
Article
PubMed
Google Scholar
Serafini A, Kuate C, Gelisse P, Velizarova R, Gigli GL, Coubes P, et al. Sleep before and after temporal lobe epilepsy surgery. Seizure. 2012;21:260–5.
Article
PubMed
Google Scholar
McCormick DA. Cholinergic and noradrenergic modulation of thalamocortical processing. Trends Neurosci. 1989;12:215–21.
Article
CAS
PubMed
Google Scholar
Kalume F, Oakley JC, Westenbroek RE, Gile J, de la Iglesia HO, Scheuer T, et al. Sleep impairment and reduced interneuron excitability in a mouse model of Dravet syndrome. Neurobiol Dis. 2015;77:141–54.
Article
PubMed
PubMed Central
Google Scholar
Bastlund JF, Jennum P, Mohapel P, Penschuck S, Watson WP. Spontaneous epileptic rats show changes in sleep architecture and hypothalamic pathology. Epilepsia. 2005;46:934–8.
Article
PubMed
Google Scholar
Zgodzinski W, Rubaj A, Kleinrok Z, Sieklucka-Dziuba M. Effect of adenosine A1 and A2 receptor stimulation on hypoxia-induced convulsions in adult mice. Pol J Pharmacol. 2001;53:83–92.
CAS
PubMed
Google Scholar
Grigg-Damberger MM, Ralls F. Sleep disorders in adults with epilepsy: past, present, and future directions. Curr Opin Pulm Med. 2014;20:542–9.
Article
PubMed
Google Scholar
Wallace E, Wright S, Schoenike B, Roopra A, Rho JM, Maganti RK. Altered circadian rhythms and oscillation of clock genes and sirtuin 1 in a model of sudden unexpected death in epilepsy. Epilepsia. 2018;59:1527–39.
Article
CAS
PubMed
Google Scholar
Kennaway DJ. Clock genes at the heart of depression. J Psychopharmacol. 2010;24:5–14.
Article
CAS
PubMed
Google Scholar
Honma S. The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm. J Physiol Sci. 2018;68:207–19.
Article
PubMed
Google Scholar
Bunney WE, Bunney BG. Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacol. 2000;22:335–45.
Article
CAS
Google Scholar
Xu C, Yu J, Ruan Y, Wang Y, Chen Z. Decoding circadian rhythm and epileptic activities: clues from animal studies. Front Neurol. 2020;11:751.
Article
PubMed
PubMed Central
Google Scholar
Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, et al. Interacting molecular loops in the mammalian circadian clock. Science. 2000;288:1013–9.
Article
CAS
PubMed
Google Scholar
Gachon F, Fonjallaz P, Damiola F, Gos P, Kodama T, Zakany J, et al. The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev. 2014;18:1397–412.
Article
Google Scholar
Li P, Fu X, Smith NA, Ziobro J, Curiel J, Tenga MJ, et al. Loss of CLOCK results in dysfunction of brain circuits underlying focal epilepsy. Neuron. 2017;96:387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leite Goes Gitai D, de Andrade TG, Dos Santos YDR, Attaluri S, Shetty AK. Chronobiology of limbic seizures: potential mechanisms and prospects of chronotherapy for mesial temporal lobe epilepsy. Neurosci Biobehav Rev. 2019;98:122–34.
Article
PubMed
Google Scholar
Wu H, Liu Y, Liu L, Meng Q, Du C, Li K, et al. Decreased expression of the clock gene Bmal1 is involved in the pathogenesis of temporal lobe epilepsy. Mol Brain. 2021;14:113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matos HC, Koike BDV, Pereira WDS, de Andrade TG, Castro OW, Duzzioni M, et al. Rhythms of core clock genes and spontaneous locomotor activity in post-status epilepticus model of mesial temporal lobe epilepsy. Front Neurol. 2018;9:632.
Article
PubMed
PubMed Central
Google Scholar
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18:164–79.
Article
CAS
PubMed
Google Scholar
Rocha AKA, de A, de Lima E, do Amaral FG, Peres R, Cipolla-Neto J, et al. Pilocarpine-induced epilepsy alters the expression and daily variation of the nuclear receptor RORα in the hippocampus of rats. Epilepsy Behav. 2016;55:38–46.
Solt LA, Burris TP. Action of RORs and their ligands in (patho)physiology. Trends Endocrinol Metab. 2012;23:619–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lipton J, Yuan E, Boyle L, Ebrahimi-Fakhari D, Kwiatkowski E, Nathan A, et al. The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation. Cell. 2015;161:1138–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao R, Li A, Cho H, Lee B, Obrietan K. Mammalian target of rapamycin signaling modulates photic entrainment of the suprachiasmatic circadian clock. J Neurosci. 2010;30:6302–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramanathan C, Kathale ND, Liu D, Lee C, Freeman DA, Hogenesch JB, et al. mTOR signaling regulates central and peripheral circadian clock function. PLoS Genet. 2018;14:e1007369.
Article
PubMed
PubMed Central
CAS
Google Scholar
Scheffer IE, Heron SE, Regan BM, Mandelstam S, Crompton DE, Hodgson BL, et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol. 2014;75:782–7.
Article
CAS
PubMed
Google Scholar
Ricos MG, Hodgson BL, Pippucci T, Saidin A, Ong YS, Heron SE, et al. Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann Neurol. 2016;79:120–31.
Article
CAS
PubMed
Google Scholar
French JA, Lawson JA, Yapici Z, Ikeda H, Polster T, Nabbout R, et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet. 2016;388:2153–63.
Article
CAS
PubMed
Google Scholar
Curatolo P. Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Pediatr Neurol. 2015;52:281–9.
Article
PubMed
Google Scholar
Govek EE, Hatten ME, Van Aelst L. The role of Rho GTPase proteins in CNS neuronal migration. Dev Neurobiol. 2011;71:528–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang Y, Park IH, Wu AL, Du G, Huang P, Frohman MA, et al. PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1. Curr Biol. 2003;13:2037–44.
Article
CAS
PubMed
Google Scholar
Arendt J, Rajaratnam SM. Melatonin and its agonists: an update. Br J Psychiatry. 2008;193:267–9.
Article
PubMed
Google Scholar
Hardeland R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res. 2012;52:139–66.
Article
CAS
PubMed
Google Scholar
Comai S, Gobbi G. Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: a novel target in psychopharmacology. J Psychiatry Neurosci. 2014;39:6–21.
Article
PubMed
PubMed Central
Google Scholar
Salva MA, Hartley S. Mood disorder, circadian rhythms, melatonin and melatonin agonists. J Central Nerv Syst Disord. 2012;4:15–26.
Google Scholar
Yildirim M, Aydin-Abidin S, Abidin I, Akca M, Canpolat S, Cansu A. Evaluation of the role of chronic daily melatonin administration and pinealectomy on penicillin-induced focal epileptiform activity and spectral analysis of ECoG in rats: an in vivo electrophysiological study. Neurochem Res. 2013;38:1672–85.
Article
CAS
PubMed
Google Scholar
Goldberg-Stern H, Oren H, Peled N, Garty BZ. Effect of melatonin on seizure frequency in intractable epilepsy: a pilot study. J Child Neurol. 2012;27:1524–15.
Article
PubMed
Google Scholar
Uberos J, Augustin-Morales MC, Molina Carballo A, Florido J, Narbona E, Muñoz-Hoyos A. Normalization of the sleep-wake pattern and melatonin and 6-sulphatoxy-melatonin levels after a therapeutic trial with melatonin in children with severe epilepsy. J Pineal Res. 2011;50:192–6.
CAS
PubMed
Google Scholar
Banach M, Gurdziel E, Jedrych M, Borowicz KK. Melatonin in experimental seizures and epilepsy. Pharmacol Rep. 2011;63:1–11.
Article
CAS
PubMed
Google Scholar
Vimala PV, Bhutada PS, Patel FR. Therapeutic potential of agomelatine in epilepsy and epileptic complications. Med Hypotheses. 2014;82:105–10.
Article
CAS
PubMed
Google Scholar
Golombek DA, Duque DF, De Brito SMG, Burin L, Cardinali DP. Time-dependent anticonvulsant activity of melatonin in hamsters. Eur J Pharmacol. 1992;210:253–8.
Article
CAS
PubMed
Google Scholar
Demirel EA, Erdogan MA, Cinar BP, Erbas O. The reducing effect of agomelatine on pentylenetetrazol-induced convulsion. Biol Fut. 2019;70:336–40.
CAS
Google Scholar
Khan S, Khurana M, Vyas P, Vohora D. The role of melatonin and its analogues in epilepsy. Rev Neurosci. 2021;32:49–67.
Article
CAS
Google Scholar
Tchekalarova J, Atanasova D, Nenchovska Z, Atanasova M, Kortenska L, Gesheva R, et al. Agomelatine protects against neuronal damage without preventing epileptogenesis in the kainate model of temporal lobe epilepsy. Neurobiol Dis. 2017;104:1–14.
Article
CAS
PubMed
Google Scholar
Dickmeis T. Glucocorticoids and the circadian clock. J Endocrinol. 2009;200:3–22.
Article
CAS
PubMed
Google Scholar
Young EA, Abelson J, Lightman SL. Cortisol pulsatility and its role in stress regulation and health. Front Neuroendocrinol. 2004;25:69–76.
Article
CAS
PubMed
Google Scholar
Yang G, Zou LP, Wang J, Ding YX. Epigenetic regulation of glucocorticoid receptor and infantile spasms. Med Hypotheses. 2011;76:187–9.
Article
CAS
PubMed
Google Scholar
Hussain SA, Treatment of infantile spasms. Epilepsia Open. 2018;3:143–54.
Article
PubMed
PubMed Central
Google Scholar
Zhang SW, Liu YX. Changes of serum adrenocorticotropic hormone and cortisol levels during sleep seizures. Neurosci Bull. 2008;24:84–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitsugi N, Arita J, Kimura F. Effects of intracerebroventricular administration of growth for hormone releasing factor on somatostatin secretion into rat hypophysial portal blood. Neuroendocrinol. 1990;51:93–6.
Article
CAS
Google Scholar
Delorey TM, Olsen RW. Gamma-aminobutyric acid A receptor structure and function. Biol Chem. 1992;267:16747–50.
Article
CAS
Google Scholar
Karoly PJ, Ung H, Grayden DB, Kuhlmann L, Leyde K, Cook MJ, et al. The circadian profile of epilepsy improves seizure forecasting. Brain. 2017;140:2169–82.
Article
PubMed
Google Scholar
Devinsky O, Dilley C, Ozery-Flato M, Aharonov R, Goldschmidt Y, Rosen-Zvi M, et al. Changing the approach to treatment choice in epilepsy using big data. Epilepsy Behav. 2016;56:32–7.
Article
PubMed
Google Scholar
Ulate-Campos A, Coughlin F, Gaínza-Lein M, Fernández IS, Pearl PL, Loddenkemper T. Automated seizure detection systems and their effectiveness for each type of seizure. Seizure. 2016;40:88–101.
Article
CAS
PubMed
Google Scholar
Manganaro S, Loddenkemper T, Rotenberg A. The need for antiepileptic drug chronotherapy to treat selected childhood epilepsy syndromes and avert the harmful consequences of drug resistance. J Cent Nerv Syst Dis. 2017;9:1179573516685883.
Article
PubMed
PubMed Central
Google Scholar
Thome-Souza S, Klehm J, Jackson M, Kadish NE, Manganaro S, Fernández IS, et al. Clobazam higher-evening differential dosing as an add-on therapy in refractory epilepsy. Seizure. 2016;40:1–6.
Article
PubMed
Google Scholar
Yegnanarayan R, Mahesh SD, Sangle S. Chronotherapeutic dose schedule of phenytoin and carbamazepine in epileptic patients. Chronobiol Int. 2006;23:1035–46.
Article
CAS
PubMed
Google Scholar
Guilhoto LM, Loddenkemper T, Vendrame M, Bergin A, Bourgeois BF, Kothare SV. Higher evening antiepileptic drug dose for nocturnal and early-morning seizures. Epilepsy Behav. 2011;20:334–7.
Article
CAS
PubMed
Google Scholar
van Andel J, Thijs RD, de Weerd A, Arends J, Leijten F. Non-EEG based ambulatory seizure detection designed for home use: what is available and how will it influence epilepsy care? Epilepsy Behav. 2016;57:82–9.
Article
PubMed
Google Scholar
Kaladchibachi S, Fernandez F. Precision light for the treatment of psychiatric disorders. Neural Plast. 2018;2018:5868570.
Article
PubMed
PubMed Central
Google Scholar
Baxendale S, O’Sullivan J, Heaney D. Bright light therapy for symptoms of anxiety and depression in focal epilepsy: randomized controlled trial. Br J Psychiatry. 2013;202:352–6.
Article
PubMed
Google Scholar
Baxendale S, O’Sullivan J, Heaney D. Bright light therapy as an add on treatment for medically intractable epilepsy. Epilepsy Behav. 2012;24:359–64.
Article
PubMed
Google Scholar
Marsh EB, Freeman JM, Kossoff EH, Vining EP, Rubenstein JE, Pyzik PL, et al. The outcome of children with intractable seizures: a 3- to 6-year follow-up of 67 children who remained on the ketogenic diet less than one year. Epilepsia. 2006;47:425–30.
Article
PubMed
Google Scholar
Fenoglio-Simeone KA, Wilke JC, Milligan HL, Allen CN, Rho JM, Maganti RK. Ketogenic diet treatment abolishes seizure periodicity and improves diurnal rhythmicity in epileptic Kcna1-null mice. Epilepsia. 2009;50:2027–34.
Article
PubMed
PubMed Central
Google Scholar
McDaniel SS, Rensing NR, Thio LL, Yamada KA, Wong M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia. 2011;52:e7–e11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ribeiro RFN, Cavadas C, Silva MMC. Small-molecule modulators of the circadian clock: pharmacological potentials in circadian-related diseases. Drug Discov Today. 2021;26:1620–41.
Article
CAS
PubMed
Google Scholar