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the pooled OR and corresponding 95% CI, using domin-
ant model (TT + CT vs CC), recessive model (TT vs CT +
CC), and other genetic models (TT vs CC, CT vs CC, and
T vs C). Furthermore, subgroup-analyses were stratified
by ethnicity, source of the control (non-FS or healthy con-
trol) and the matching criteria in controls (age-, sex-
matched or not). We calculated the pooled OR using the
Z test, and regardedP < 0.05 as statistical significance.

We used Cochran’s Q test and theI2 statistic to estimate
the inter-study heterogeneity among the eligible studies, and
regardedI2 � 50% as statistical significance. In this condition,
the random-effects model was applied to calculate the
pooled OR. Otherwise, the fixed-effects model was applied.
Moreover, publication bias was evaluated using visual inspec-
tion of Funnel plot which was obtained from Begg’s test. All
data were calculated and analyzed with the STATA software
(version 15.0; Stata Corp, College Station, Texas).

Results
Study selection
Altogether 472 potentially related articles were yielded at
the initial database search, and 349 were left after

duplicate removal (Fig.1). After manual screening by titles
and abstracts, 302 studies were excluded according to the
exclusion criteria. Forty-seven full-text studies were used
for further evaluation. Ultimately, 8 eligible studies con-
sisting of 5937 subjects (775 FS patients and 5162 con-
trols) were included in this study [11–18]. The detailed
information of all included studies are present in Table1.
The genotype distributions ofGABRG2 rs211037 poly-
morphism of included studies are shown in Table2.

Quantitative data analysis
Overall, we found no significant relationship between
the GABRG2 rs211037 polymorphism (TT + CT vs CC)
and the risk of FS (dominant model, OR = 0.95, 95%CI
0.64–1.41,P = 0. 80, Fig.2). Nevertheless, when stratify-
ing the subjects by ethnicity, theGABRG2 rs211037
polymorphism (TT vs CT + CC) was significantly related
to decreased risk of FS in Asian patients (recessive
model, OR = 0.63, 95%CI 0.45–0.88,P = 0.006, Fig.3). As
to the Caucasian patients, theGABRG2 rs211037 poly-
morphism (CT vs CC) was significantly related to

Fig. 2 Forest plot of the relationship between the GABRG2 rs211037 polymorphism and risk of FS. No significant association was observed

Fig. 3 Forest plot of subgroup analysis in Asian populations. The GABRG2 rs211037 polymorphism was significantly related to decreased risk of FS
in Asian populations
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increased risk of FS (OR = 1.56, 95%CI 1.14–2.15, P =
0.006, Table3).

To eliminate the potential confounding factors in the
control group, we conducted stratified analyses for
healthy control subjects and age-, sex-matched controls.
We found a significant relation betweenGABRG2
rs211037 polymorphism and the susceptibility to FS
when healthy controls were employed for comparison
(recessive model, OR = 0.59, 95% CI 0.45–0.77,P < 0.001,
Fig. 4). When analysis was performed using data from
studies with age and sex matched controls, significant
association was detected between theGABRG2 rs211037
variant (CT + TT vs CC) and the susceptibility to FS
(dominant model, OR = 0.60, 95% CI 0.43–0.86, P =
0.005, Table3).

Publication bias
The symmetrical Begg’s funnel plot indicated that there
was no publication bias among included studies (Fig.5).

Quantitative evaluation by Egger’s test also demon-
strated no publication bias (t = 0.70,P = 0.497).

Discussion
Evidence is emerging that theGABRG2 gene is impli-
cated in the mechanisms of FS, however, the relationship
betweenGABRG2 rs211037 polymorphism and the risk
of FS is still controversial. Previous meta-analysis studies
have demonstrated that theGABRG2 rs211037 polymor-
phisms is significantly relative to the risk of FS, but they
are limited by small sample sizes. Thus, we conducted
this meta-analysis to further explore the relationship.

Different from the previous meta-analyses, we found
that GABRG2 rs211037 polymorphism was not signifi-
cantly related to the risk of FS using data combining all
ethnicities. However, theGABRG2 rs211037 polymorph-
ism was significantly related to decreased risk of FS in
Asian populations, but increased risk of FS in Caucasian
populations. This suggested that ethnicity could modify

Fig. 4 Forest plot of subgroup analysis in healthy controls. The GABRG2 rs211037 polymorphism was significantly related to the risk of FS in
healthy controls

Table 3 Stratified analysis of the association between GABRG2 rs211037 polymorphism and FS

Variable na TT + CT vs CC TT vs CT + CC TT vs CC CT vs CC T vs C

OR (95%CI) Phet OR (95%CI) Phet OR (95%CI) Phet OR (95%CI) Phet OR (95%CI) Phet

Total 12 0.95 (0.64, 1.41) < 0.001 0.82 (0.50, 1.32) < 0.001 0.76 (0.39,1.46) < 0.001 1.05 (0.76,1.44) 0.04 0.95 (0.69, 1.32) < 0.001

Ethnicity

Asian 5 0.70 (0.48, 1.02) 0.65 0.63 (0.45, 0.88) 0.19 0.56 (0.36,0.87) 0.5 0.79 (0.53, 1.18) 0.57 0.73 (0.59, 0.90) 0.34

Caucasian 3 1.76 (0.97, 3.17) 0.03 1.36 (0.35, 5.27) 0.02 1.73 (0.34,8.78) < 0.001 1.56 (1.14, 2.15) 0.27 1.57 (0.87, 2.83) 0.003

Healthy control

Yes 9 0.76 (0.51, 1.12) 0.03 0.59 (0.45, 0.77) 0.38 0.50 (0.35,0.71) 0.41 0.96 (0.75, 1.24) 0.13 0.79 (0.61, 1.02) 0.01

No 3 1.86 (0.78, 4.43) 0.02 1.52 (0.25, 9.11) 0.02 1.92 (0.22,16.68) 0.004 1.67 (1.07, 2.61) 0.2 1.66 (0.71, 3.88) 0.002

Matched controls

Yes 6 0.60 (0.43, 0.86) 0.2 0.56 (0.39, 0.80) 0.31 0.40 (0.25, 0.63) 0.41 0.71 (0.49, 1.04) 0.28 0.64 (0.52, 0.80) 0.23

No 6 1.35 (0.86, 2.11) 0.02 1.01 (0.43, 2.36) < 0.001 1.16 (0.41, 3.22) < 0.001 1.37 (1.05,1.78) 0.27 1.21 (0.77, 1.91) < 0.001

CI confidence interval, OR odds ratio, Phet P value of Q test for heterogeneity test
aNumber of datasets included in the meta-analysis
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the impact of the GABRG2 gene on the risk of FS. In
addition, the GABRG2 rs211037 polymorphism was as-
sociated with decreased risk of FS when healthy controls
out of the whole controls were used for comparison.

The γ2 subunit is the major component of
GABAAR, and its decrease is reported to affect the
phasic or synaptic transmission [19–22]. Studies
about cultured hippocampal neurons indicated that
the relation of γ2 subunit mutations with FS may
be due to the decreased expression of mutant
GABAAR on the synaptic surface [23]. In a family
with febrile seizures and aGABRG2 variant R43Q,
resting-state fMRI revealed increased functional
connectivity within the somatosensory cortex, as
compared to the age-matched controls [24]. Besides,
GABRG2 variants may affect the function and ex-
pression of several epilepsy-related genes [25].
Thus, mutations in GABRG2 have been proposed as
candidates of FS susceptibility genes. TheGABRG2
rs211037 polymorphism may affect the expression
of GABAAR subunits, modify the receptor compos-
ition, influence the reaction to extrinsic environ-
mental signals, and eventually alter the
neuroinflammatory pathway in FS [10, 26, 27]. In
our study, the GABRG2 rs211037 polymorphism
may be a protective factor for FS and play a role in
the mechanisms of FS.

However, the results should be explained with caution
due to the following limitations. First, relevant studies in
other databases may be missed out. Second, stratified
studies were not performed in Africans due to limited
data. Therefore, our results need to be further verified in

Africans. Third, the analysis of gene-gene and loci-loci
interactions was not conducted on account of the insuf-
ficient data.

Conclusions
In conclusion, the current study indicated that the
GABRG2 rs211037 polymorphism is significantly related
to decreased risk of FS compared to healthy control.
The GABRG2 rs211037 polymorphism might diversely
contribute to the risk of FS in different ethnicities. Fur-
ther studies are essential to verify the conclusions and
reveal the underlying mechanisms.
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