
Wang et al. Acta Epileptologica            (2022) 4:33  
https://doi.org/10.1186/s42494-022-00097-x

RESEARCH

Potentials of miR‑9‑5p in promoting 
epileptic seizure and improving survival 
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Abstract 

Background:  Epilepsy affects over 70 million people worldwide; however, the underlying mechanisms remain 
unclear. MicroRNAs (miRNAs) have essential functions in epilepsy. miRNA-9, a brain-specific/enriched miRNA, plays a 
role in various nervous system diseases and tumors, but whether miRNA-9 is involved in epilepsy and glioma-asso-
ciated epilepsy remains unknown. Therefore, we aimed to explore the potential role of miR-9-5p in seizures and its 
effect on the survival of glioma patients, in order to provide new targets for the treatment of epilepsy and glioma.

Methods:  The YM500v2 database was used to validate the expression of hsa-miR-9-5p in tissues. Moreover, qRT-PCR 
was performed to investigate the expression of miR-9-5p in temporal lobe epilepsy patients and rats with lithium-
pilocarpine-induced seizures. Recombinant adeno-associated virus containing miR-9-5p was constructed to overex-
press miR-9-5p in vivo. The effects of miR-9-5p on the behavior and electroencephalographic activities of the lithium-
pilocarpine rat model of epilepsy were tested. Bioinformatics analysis was used to predict the targets of miR-9-5p and 
explore its potential role in epilepsy and glioma-associated epilepsy.

Results:  The expression of miR-9-5p increased at 6 h and 7 days after lithium-pilocarpine-induced seizures in rats. 
Overexpression of miR-9-5p significantly shortened the latency of seizures and increased seizure intensity at 10 min 
and 20 min after administration of pilocarpine (P < 0.05). Predicted targets of miR-9-5p were abundant and enriched 
in the brain, and affected various pathways related to epilepsy and tumor. Survival analysis revealed that overexpres-
sion of miR-9-5p significantly improved the survival of patients from with low-grade gliomas and glioblastomas. The 
involvement of miR-9-5p in the glioma-associated epileptic seizures and the improvement of glioma survival may be 
related to multiple pathways, including the Rho GTPases and hub genes included SH3PXD2B, ARF6, and ANK2.

Conclusions:  miR-9-5p may play a key role in promoting epileptic seizures and improving glioma survival, prob-
ably through multiple pathways, including GTPases of the Rho family and hub genes including SH3PXD2B, ARF6 and 
ANK2. Understanding the roles of miR-9-5p in epilepsy and glioma and the underlying mechanisms may provide a 
theoretical basis for the diagnosis and treatment of patients with epilepsy and glioma.
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Background
Epilepsy is one of the most commonly occurring 
and devastating chronic neurologic disorders, which 
manifests as unprovoked, recurrent seizures [1, 2]. It 
affects over 70 million people worldwide, ranging from 
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neonates to the elderly [1, 3]. Social isolation, internal 
stigma, and stress from unpredictable seizures repre-
sent significant barriers to normal life for patients and 
their families [4, 5]. Unfortunately, the morbidity and 
mortality rates of epilepsy remain unchanged, and up 
to one-third of these patients still suffer from medically 
refractory seizures, despite numerous therapeutic pro-
gresses [6–8]. This is mainly because that the current 
treatments primarily suppress seizures rather than cor-
recting the mechanisms underlying the pathogenesis of 
epilepsy [8]. Further, these underlying molecular mech-
anisms are not fully understood.

Both epilepsy and glioma are localized, highly energy-
consuming diseases of the brain. Large-scale dynamic 
changes in gene expression are considered to be the 
basis for the causal pathogenic processes of epilepsy, 
such as ion channel regulation, glial proliferation, neu-
ronal death, inflammation, modulation of neurotrans-
mitter receptors, synaptic remodeling, cell proliferation 
and differentiation, and migration [9–14]. MicroR-
NAs (miRNAs) represent a diverse class of small (~ 22 
nucleotides), non-coding RNAs that negatively modu-
late gene expression by binding to complementary 
sequences of the 3′ untranslated region in most cases 
[15]. Emerging evidence shows that, as critical regula-
tors of brain development and function, various miR-
NAs play important roles in neurological diseases, 
including epilepsy [10, 16–20].

miRNA-9 (miR-9), a brain-specific/enriched miRNA, 
can regulate a variety of signaling pathways at the 
post-transcriptional level, mainly related to neurogen-
esis, and is the core of the gene network controlling 
the progenitor state [15, 21]. Intriguingly, this miRNA 
may exert opposite effects in different nervous system 
diseases. miR-9 plays a protective role during patho-
logical processes of stroke [22–26], Alzheimer’s disease 
[27, 28], spinal cord injury [29], and multiple sclerosis 
[30], while it aggravates neurotoxicity in N-methyl-
4-phenylpyridinium iodide-induced Parkinson’s dis-
ease by targeting Sirtuin 1 [21, 31]. In particular, the 
effect of miR-9 on glioma remains controversial. While 
some studies have reported its role in the develop-
ment and progression of glioma and association with 
an unfavorable prognosis in human gliomas [21, 32], 
other studies have shown that miR-9 can inhibit glioma 
growth [33–37]. Previous studies have demonstrated 
that miR-9 is significantly upregulated in the epileptic 
tissues from humans and animal models [38–41]. How-
ever, it remains largely unknown if or how miR-9 affects 
the primary epilepsy and secondary glioma-associated 
epilepsy.

Therefore, in this study, we set out to evaluate the con-
tributions of miR-9-5p to epilepsy.

Materials and methods
Quantitative reverse transcription‑polymerase chain 
reaction (qRT‑PCR)
miR-9-5p-specific primer (5′-UCU​UUG​GUU​AUC​UAG​CUG​
UAUGA-3′) was designed and synthesized by Guangzhou 
Ribo BioCompany (Guangzhou, China) [42]. Bulge-Loop™ 
qRT-PCR was performed [43, 44] in two steps: (1) the reverse 
transcription reaction using miR-9- and U6-specific stem-
loop reverse transcription primers, and (2) fluorescent quan-
titative PCR using SYBR Green fluorescent dye and specific 
forward/reverse primers.

Construction of recombinant adeno‑associated virus 
(rAAV) carrying miR‑9‑5p
To overexpress miR-9-5p in vivo, rAAV containing miR-
9-5p was constructed by inserting the precursor miR-9-5p 
gene fragment into the AAV plasmid. The recombinant 
expression plasmid was then cotransfected into AAV-293 
cells with pHelper (carrying adenovirus-derived genes) 
and pAAV-RC (carrying AAV replication and capsid 
genes). Next, the AAV virus particles were collected from 
the infected AAV-293 cells. Finally, the virus carrying 
miR-9-5p was condensed and purified for animal experi-
ments. PCR verified the expression of miR-9-5p in rAAV 
and the concentration of the virus was 1.41E+ 13 v.g./ml.

Animals
All procedures involving animals were conducted in strict 
compliance with the Chinese Animal Welfare Act, and 
approved by the Animal Experimentation Ethics Com-
mittee of the North Sichuan Medical College (approval 
number NSMC(A) 2021 (21)). Male Sprague-Dawley 
rats weighing 180–220 g (6–8 weeks old) were purchased 
from the Animal Experiment Center of North Sichuan 
Medical College. Animals were housed at 22–24 °C with 
50–60% humidity under a 12-hour light-dark cycle (lights 
on at 8:00 am), with free access to food and water.

Experimental animal grouping
The rats were anesthetized with intraperitoneal injection 
of 1% sodium pentobarbital (40 mg/kg) and eye lubrica-
tion was used to minimize drying throughout the proce-
dure. One microliter of AAV was stereotactically injected 
into each of the bilateral hippocampi (0.1 μl/min; coordi-
nates: AP, − 3.6 mm, ML, − 2.8 mm, DV, − 3.5 mm) using 
a microinjector (Gaoge, Shanghai, China) (10 μl capacity) 
within 10 min [45]. Rats in the experimental group were 
infected with the miR-9-5p-carrying virus (n = 11), while 
those in the vehicle group were injected with an empty 
adenovirus (n = 11). To permit spreading of the virus and 
minimize reflux when the needle was retracted, the nee-
dle was retained in place for 10 min post-injection, then 
it was slowly withdrawn. After surgery, a heating pad was 
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used to maintain the rat’s temperature at 37 °C for recov-
ery. The entire process lasted 2 to 4 h.

Animal model of epilepsy
Three weeks after viral infection,  lithium chloride 
and  pilocarpine was used to induce status epilepticus 
(SE), which reproduces most of the features of human 
temporal lobe epilepsy (TLE). Rats receiving either vehi-
cle or miR-9-5p-carrying virus were treated with intra-
peritoneal injections of lithium chloride (127 mg/kg) 
and atropine (1 mg/kg), 20 h and 30 min before the first 
administration of pilocarpine by intraperitoneal injection 
(35 mg/kg), respectively. Seizures were scored accord-
ing to the Racine’s standard criteria [46]. If no seizure 
of grade 4 or higher occurred within 30 min of the first 
dose, the dose of pilocarpine was increased by 20% every 
10 min until the occurrence of level-4–5 seizures. How-
ever, the number of pilocarpine injections per animal did 
not exceed five [47]. Sixty minutes after SE initiation, the 
rats were administered with intraperitoneal diazepam 
(10 mg/kg) to terminate the continuous seizures [48]. 
Only animals with seizures of level 4–5 were evaluated.

Surgical procedures and electrophysiological recordings
The rats were anesthetized with 1% sodium pentobarbi-
tal (40 mg/kg, intraperitoneal) and fixed on a stereotaxic 
apparatus (RWD Life Science Co., Ltd., China). The sub-
cutaneous tissue and periosteum were separated bluntly 
with cotton swabs to minimize the extent of injury and 
bleeding in order to fully expose the skull. The position 
of the right hippocampus (AP − 3.6 mm, ML − 2.8 mm, 
DV − 3.5 mm) was determined and marked on the skull 
surface [45]. The skull window was covered with dental 
cement H-frame for recording hippocampal local field 
potentials (LFPs) [49, 50].

To record neural activity, the rats were implanted with 
recording electrodes (4 × 4 platinum-iridium alloy elec-
trode array, each 25 μm in diameter). The lower end of the 
microfilament electrode was placed close to the brain tissue 
using a microdriver [27]. LFPs were pre-amplified (× 1000), 
filtered (0.1–1000 Hz), and digitized at 4 kHz using an 
OmniPlex® D Neural Data Acquisition System (Plexon 
Inc., Dallas, TX) [45, 51]. Baseline LFPs were recorded for 
10 min followed by intraperitoneal injection of atropine. 
After a 30-min interval, pilocarpine was administered to 
induce seizures in both groups, and recordings were made 
for a total of 120 min after onset of seizures of level 4–5.

Human participants
Temporal lobe cortical tissueswere randomly cho-
sen from 220 specimens in the epileptic brain tissue 

bank from Chongqing Medical University. A total of 24 
patients with medically refractory TLE, including 13 
males and 11 females, were analyzed [50]. The mean age 
of the patients was 29.79 ± 1.71 years (range: 14–47) and 
the mean course of the disease was 10.29 ± 0.98 years 
(range: 3–19). At least three antiepileptic drugs were 
demonstrated to be ineffective in these patients. The con-
trol group included 12 age- and sex-matched patients 
with traumatic brain injury or hematoma clearance who 
were treated with temporal cortical excision (with no his-
tory of epilepsy or epileptic drug exposure). Informed 
consent was obtained from all patients or their relatives 
for the use of brain tissues in the experimental proce-
dures. The research protocol was conducted in com-
pliance with the Code of Ethics of the World Medical 
Association (Declaration of Helsinki), and the require-
ments of the ethics committee of Chongqing Medical 
University.

Visualization of the expression profile of miR‑9‑5p 
in human tissues
The expression profile of miR-9-5p in human tissues was 
detected and  visualized using the database YM500v2 
(http://​ngs.​ym.​edu.​tw/​ym500​v2/​index.​php), which incor-
porating 8,105 smRNA-seq datasets from TCGA 
involved  in  those of primary tumors, paired normal tis-
sues, peripheral blood mononuclear cell (PBMC), recur-
rent tumors and metastatic tumors [52].

Target gene prediction
Target genes of hsa-miR-9-5p were predicted using 
TargetScan  (https://​www.​targe​tscan.​org/​vert_​80/), 
miRDB  (http://​mirdb.​org/), and miRwalk  (http://​mirwa​
lk.​umm.​uni-​heide​lberg.​de/) softwares. Venn diagrams 
were generated with hiplot (https://​hiplot.​com.​cn/​basic/​
dendr​ogram) [53, 54].

Gene chip data acquisition
To confirm the role of hsa-miR-9-5p in tumor-induced 
epilepsy, the gene expression profile GSE32534 was 
obtained from the Gene Expression Omnibus (GEO) 
database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/). Five for-
malin-fixed paraffin-embedded peritumoral cortical 
tissue sections were obtained from low-grade glioma 
patients, divided into seizure-paired and non-seizure 
groups (Table  1). GSE32534 was quantified using the 
GPL570 [HG-U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array.

http://ngs.ym.edu.tw/ym500v2/index.php
https://www.targetscan.org/vert_80/
http://mirdb.org/
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
https://hiplot.com.cn/basic/dendrogram
https://hiplot.com.cn/basic/dendrogram
http://www.ncbi.nlm.nih.gov/geo/
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Functional and tissue enrichment analysis
For functional enrichment analyses, Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses were performed using the 
TCGA biolinks package [55]. Tissue enrichment analysis 
was conducted using DAVID v6.8 (https://​david.​ncifc​rf.​
gov/​summa​ry.​jsp) and plotted using hiplot [53, 54].

Recognition and analysis of differentially expressed genes 
(DEGs)
DEGs were analyzed using GEO2R (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/​geo2r/), which was included in the GEO 
database. GSE32534 data were divided into the non-
epileptic glioma group or epileptic glioma group  [56]. 
Genes with the absolute value of the logarithm (base 2) 
fold change (logFC)>0.3 and P < 0.05 were considered as 
DEGs. The volcano plot and heatmap of the DEGs were 
plotted at http://​www.​bioin​forma​tics.​com.​cn.

Survival analysis
Survival analysis was performed with the online Oncolnc 
survival analysis server (http://​www.​oncol​nc.​org, data 
gathered from TCGA). Tumor tissue versus normal tis-
sue from the TCGA database was used.

Protein‑protein interaction (PPI) network construction 
and module analysis
PPI data of predicted targets of hsa-miR-9-5p involved in 
the glioma-associated epilepsy were obtained from the 
STRING database (version 11.0, https://​string-​db.​org/), 
which collects and integrates known and predicted PPI 
data. The results were then imported into the Cytoscape 
software and visualized. The top 10 hub genes and signifi-
cant modules in the PPI network were identified using 

the MCODE plugin and the MCC method of cytoHubba 
plugin of the Cytoscape software.

Statistical analysis
All data were analyzed using the GraphPad Prism 8.0.2 
software (GraphPad Software, Inc., La Jolla, CA) or the 
SPSS 25.0 software (IBM, Inc., CA). Values are expressed 
as the mean ± standard deviation. Student’s t-test and 
Wilcoxon ranked-sum test were used for comparison of 
normally distributed continuous variables and categori-
cal variables,  respectively. The Fisher’s exact test was 
used to compare rates. P < 0.05 was considered as signifi-
cantly different.  *P < 0.05;  **P < 0.01;  ***P < 0.001; ns:  no 
statistically significant difference.

Results
miR‑9‑5p levels increase in rat hippocampus at 6 h 
and 7 days after SE
miR-9 has two mature forms, miR-9-5p and miR-9-3p 
[21, 57], which are often called miR-9 and miR-9*, 
respectively, because of the preferential use of the 5′ 
strand in deuterostomes [21]. Using the YM500v2 data-
base, both forms of miR-9 were found to be enriched in 
the human brain, especially hsa-miR-9-5p [52] (Fig.  1a, 
b). To address the role of miR-9-5p in epileptic seizures, 
we investigated its expression levels in TLE patients and 
rats with lithium‑pilocarpine-induced seizures using 
qRT-PCR. The miR-9-5p expression in temporal cortical 
tissues of TLE patients did not significantly differ from 
that in controls (P > 0.05) (Fig.  1c). Interestingly, qRT-
PCR results showed that the miR-9-5p expression in the 
hippocampus of lithium-pilocarpine-treated rats was sig-
nificantly higher at 6 h and 7 days after SE than that in the 
vehicle group (Fig. 1d), but not at 24 h, 21 days, or 60 days 

Table 1  Sample information of the gene expression profile dataset GSE32534

FFPE formalin-fixed paraffin-embedded

Accession Title Source name Gender Tissue Disease state Tumor type

GSM805925 Epilepsy, sample 1 FFPE peritumoral sections Male peritumoral cortex Epilepsy astrocytoma

GSM805926 Epilepsy, sample 2 FFPE peritumoral sections Male peritumoral cortex Epilepsy ganglioglioma

GSM805927 Epilepsy, sample 3 FFPE peritumoral sections Female peritumoral cortex Epilepsy oligodendroglioma

GSM805928 Epilepsy, sample 4 FFPE peritumoral sections Male peritumoral cortex Epilepsy ganglioglioma

GSM805929 Epilepsy, sample 5 FFPE peritumoral sections Male peritumoral cortex Epilepsy astrocytoma

GSM805930 No Epilepsy, sample 1 FFPE peritumoral sections Female peritumoral cortex No epilepsy ganglioglioma

GSM805931 No Epilepsy, sample 2 FFPE peritumoral sections Male peritumoral cortex No epilepsy ganglioglioma

GSM805932 No Epilepsy, sample 3 FFPE peritumoral sections Female peritumoral cortex No epilepsy oligodendroglioma

GSM805933 No Epilepsy, sample 4 FFPE peritumoral sections Male peritumoral cortex No epilepsy ganglioglioma

GSM805934 No Epilepsy, sample 5 FFPE peritumoral sections Male peritumoral cortex No epilepsy astrocytoma

https://david.ncifcrf.gov/summary.jsp
https://david.ncifcrf.gov/summary.jsp
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.bioinformatics.com.cn
http://www.oncolnc.org
https://string-db.org/
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after SE (P > 0.05). These data indicate that miR-9-5p may 
play a vital and complex role in epileptic seizures.

Overexpression of miR‑9‑5p significantly exacerbates 
the lithium‑pilocarpine‑induced epileptic seizures
Rats were randomly divided into the vehicle or miR-9-5p 
group (n = 11 in each group) to investigate the effects of 
miR-9-5p on lithium-pilocarpine-induced epileptic sei-
zures. Seizure latency was defined as the duration from 
pilocarpine administration to the occurrence of first sei-
zure of grade ≥ 4. Results showed that the latency of rats 
in the miR-9-5p group was significantly shorter than that 
of the vehicle group (Student’s t-test, P < 0.05) (Fig.  2a). 
Moreover, the miR-9-5p group had significantly higher 
Racine scores than those in the vehicle group at 10 min 
and 20 min after seizure onset (grade 4 or higher) (Wil-
coxon rank-sum test, P < 0.05) (Fig.  2b). The rate of sei-
zures above grade 4 in the miR-9-5p group was 100% and 
that in the vehicle group was 81.8% (Fisher’s exact test, 
P > 0.05). EEG recordings further revealed shorter latency 
and higher severity of epileptic seizures (Fig. 2d).

miR‑9‑5p target gene prediction and enrichment analysis
As mentioned above, miRNAs generally exert biologi-
cal functions by suppressing the expression of specific 
target genes. Hence, we sought to predict the potential 
target genes of miR-9-5p using TargetScan, miRDB, and 
miRWalk softwares (Fig.  3a). Tissue enrichment analy-
sis indicated that the predicted target genes of miR-9-5p 
were highly expressed in the human brain, especially in 
amygdala (Fig. 3b). GO and KEGG terms with corrected 
P < 0.05 were considered significantly enriched (Fig.  4). 
GO analysis consists of biological processes (BP), cell 
composition (CC), and molecular function (MF). BP 
analysis showed that the targets were mainly enriched 
in processes of extracellular matrix organization (n = 6), 
neurological system process (n = 5), and metencephalon 
development (n = 3). CC analysis showed that the targets 
were mainly enriched in the trans-Golgi network (n = 6), 
proteinaceous extracellular matrix (n = 11), and cell pro-
jection (n = 14). MF analysis showed that the targets 
were mainly enriched in actin binding (n = 16), phos-
phatidylinositol transporter activity (n = 2), and zinc ion 

Fig. 1  Expression of miR-9-5p in epileptic and non-epileptic tissues. a Expression of miR-9-5p in human tissue; b Expression of miR-9-3p in human 
tissue; c Expression level of miR-9-5p in the temporal lobe of TLE patients and controls; d Expression of miR-9-5p in the hippocampal tissues of rats 
was significantly increased at 6 h and 7 days after SE, compared to the control group (*P < 0.05). RPM, reads per million mapped reads
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Fig. 2  Effects of miR-9-5p overexpression on lithium-pilocarpine-induced seizure activity in rats. a Effects of miR-9-5p overexpression on 
seizure latency. b Racine scores at different time points after seizure onset. c Comparison of seizure rate. d Representative EEG recordings of 
lithium-pilocarpine-induced seizures in the miR-9-5p and vehicle groups

Fig. 3  Predicted target genes of hsa-miR-9-5p. a A total of 602 target genes of hsa-miR-9-5p were predicted by all of the Targetscan, miRDB, 
and miRwalk softwares. b Tissue enrichment analysis suggested that the target genes were most highly expressed in the brain, especially in the 
amygdala
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Fig. 4  Enrichment analysis of target genes of hsa-miR-9-5p. a GO (BP) enrichment analysis. b GO (CC) enrichment analysis. c GO (MF) enrichment 
analysis. d KEGG enrichment analysis



Page 8 of 15Wang et al. Acta Epileptologica            (2022) 4:33 

transmembrane transporter activity (n = 3). In addition, a 
large number of terms were enriched in KEGG, especially 
those associated with cancer and epilepsy, such as molec-
ular mechanisms of cancer (n = 23), phosphatase and 
tensin homolog (PTEN) signaling (n = 11) [58], prostate 
cancer signaling (n = 11), fibroblast growth factor (FGF) 
signaling (n = 9) [59, 60], and ErbB signaling (n = 9) [61].

Hsa‑miR‑9‑5p may play a critical role in human cancer, 
especially glioma
Enrichment analysis indicated that the hsa-miR-9-5p 
may regulate tumor-associated pathways. Thus, to inves-
tigate the potentially critical role of miR-9-5p in human 
cancer, Kaplan–Meier survival analysis involving 21 types 
of tumor was performed using OncoLnc [62]. The results 
showed that hsa-miR-9-5p might influence the survival 
from nine types of tumor (P < 0.05). Increased hsa-miR-
9-5p expression was correlated with poor survival from 
seven types of tumor including esophageal carcinoma 
(ESCA), kidney renal clear cell carcinoma (KIRC), liver 
hepatocellular carcinoma (LIHC), lung adenocarcinoma 
(LUAD), sarcoma (SARC), stomach adenocarcinoma 

(STAD), and breast invasive carcinoma (BRCA), while 
predicting longer survival from glioblastoma (GBM) and 
lower-grade glioma (LGG) (Fig. 5).

Hsa‑miR‑9‑5p may play a critical role in glioma‑induced 
epilepsy
Based on the results that high expression of hsa-miR-
9-5p predicted longer survival in GBM and LGG, and 
with previous evidence indicating that the glioma-
induced epilepsy may be associated with favorable prog-
nosis [63–65], we hypothesized that hsa-miR-9-5p might 
play a key role in glioma-induced epilepsy. The gene 
expression profile dataset GSE32534 was used to identify 
DEGs between epilepsy and non-epilepsy patients with 
low-grade brain tumor, which were considered as risk 
genes (Fig. 6a, b) [62]. A Venn diagram was made to com-
pare the DEGs (risk genes) with the miR-9-5p targets, 
which showed that 12.6% of the predicted targets were 
risk genes (Fig. 6c). Subsequently, for these targets of hsa-
miR-9-5p associated with glioma-associated epilepsy, the 
PPI network and significant functional modules identi-
fied by MCODE plugin  of the Cytoscape software  were 

Fig. 5  Survival analysis of nine types of tumor
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visualized (Fig.  6d). The top 10 hub genes were identi-
fied by the MCC method of cytoHubba plugin, including 
SH3 and PX domains 2A (SH3PXD2B), ADP ribosylation 
factor 6 (ARF6), ankyrin 2, neuronal (ANK2), kinesin 
family member 13A (KIF13A), member RAS oncogene 
family (RAB8A), cyclin E2 (CCNE2), pleckstrin homol-
ogy domain interacting protein (PHIP), polybromo 1 
(PBRM1), serine/threonine kinase 38 like (STK38L), and 
transducin (beta)-like 1 X-linked receptor 1 (TBL1XR1) 

(Table  2). GO analysis showed that these targets were 
mainly enriched in di- and trivalent inorganic cation 
transport (n  = 3), cell projection organization (n  = 4), 
and trans-Golgi network (n = 2) (Fig. 7). Only four path-
ways were enriched in KEGG analysis, which were regu-
lation of actin-based motility by Rho (n = 3), chondroitin 
sulfate biosynthesis (late stages) (n = 2), signaling by Rho 
family GTPases (n = 4), and D-myo-inositol (1,4,5)-tris-
phosphate biosynthesis (n = 2).

Fig. 6  Targets of hsa-miR-9-5p are associated with glioma-associated epilepsy. a Volcano plot of DEGs. b Heatmap of the DEGs. c Venn diagrams of 
overlap between DEGs (risk genes) and miR-9-5p targets. d Schematic diagram of PPI of targets of hsa-miR-9-5p associated with glioma-associated 
epilepsy. Five significant functional modules identified by MCODE were circled by other targets. For both nodes, a darker color indicates a higher 
MCC score
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Discussion
In this study, we confirmed that the expression of miR-
9-5p increased at 6 h and 7 days after SE in hippocampal 
tissues from epileptic rat models. miR-9-5p overexpres-
sion aggravated SE, and the mechanism underlying this 
effect likely involved in various targets. Survival analysis 
indicated that miR-9-5p may lead to better glioma sur-
vival. These results revealed a previously unrecognized 
role of miR-9-5p in modifying epilepsy and in improving 
glioma survival; therefore, it may be a potential novel tar-
get of diagnosis and treatment for epilepsy and glioma.

Previous studies have reported different alterations 
of miR-9 expression in epilepsy [38–41]. For example, 
Kan et  al. performed array-based genome-wide miRNA 
expression profiling, showing that miR-9 was signifi-
cantly upregulated in hippocampal tissues from patients 
with mesial TLE [39]. In contrast, Risbud et al. performed 
microRNA array analysis on the whole hippocampus of 
lithium-pilocarpine-induced C57 mice, showing that 
miR-9 expression decreased at 4 h, 48 h, and 3 weeks fol-
lowing SE (P < 0.05) [40]. However, most previous stud-
ies did not distinguish miR-9-5p from miR-9-3p. Hence, 
we employed qRT-PCR and confirmed that miR-9-5p 
expression in the hippocampus of lithium-pilocarpine-
treated rats was increased at 6 h and 7 days after SE, but 
not changed at 24 h, 21 days, or 60 days in rats. Similarly, 
we did not find altered expression of miR-9-5p in corti-
cal tissues from patients with TLE. This indicates that the 
change of miR-9-5p expression is not consistent through-
out the epileptic process. The dynamic change of miR-
9-5p at various time points after SE may be associated 
with epilepsy. These findings reveal complex changes of 
miR-9-5p expression in epileptic tissues, which may be 
related to the complex regulation of miR-9-5p involved in 
epileptic seizures.

Previous studies have shown that miRNAs serve as 
key regulators of the pathophysiology of epilepsy [19, 

66–70]. Our behavioral analysis showed that miR-9-5p 
overexpression reduced seizure latency, and significantly 
increased seizure grade at 10 min and 20 min after first 
seizure of grade >4, suggesting that this miRNA is pro-
epileptic. miRNAs are involved in various biological 
functions via regulation of their target genes [71], so we 
next predicted the target genes of hsa-miR-9-5p by bioin-
formatics tools and performed tissue enrichment analysis 
and  functional enrichment analysis [62]. We found that 
most of these targets were enriched in the brain, espe-
cially in the amygdala, which has also been previously 
suggested to be one of the key structures involved in epi-
lepsy [72–75]. GO analysis indicated that these targets 
may be involved in neurological system processes asso-
ciated with epilepsy, such as neuron differentiation [76], 
transition metal ion transport [77], G-protein-coupled 
receptor protein signaling pathway [78], neuron projec-
tion [79], and di- and trivalent inorganic cation trans-
membrane transporter activity [77, 78]. Several KEGG 
pathways have been previously implicated in epilepsy, 
including FGF signaling [59, 60], ErbB signaling [61], 
PTEN signaling [58], glucocorticoid receptor signal-
ing [80], GNRH signaling [81], NGF signaling [82], and 
renin-angiotensin signaling [83].

On the same time, many enriched pathways are associ-
ated with cancer, such as the molecular mechanisms of 
cancer and prostate cancer signaling. Subsequently, nine 
types of tumor were observed to be significantly influ-
enced by hsa-miR-9-5p. Specifically, upregulated miR-
9-5p correlated with worse survival of seven tumor types 
(including ESCA, KIRC, LIHC, LUAD, SARC, STAD, and 
BRCA), while miR-9-5p could improve the survival of 
two tumor types (GBM and LGG) in the brain.

This effect has also been reported in several previous 
studies. Zhang et  al. found that miR-9-5p suppresses 
the proliferation of GBM cells by targeting forkhead 
box P2 (FOXP2), which improves tumor survival [33]. 

Table 2  Basic information of top 10 hub genes

Rank Gene Full name LogFC Score

1 SH3PXD2B SH3 and PX domains 2A − 0.50491 126

2 ARF6 ADP ribosylation factor 6 −0.18908 118

3 ANK2 ankyrin 2, neuronal 0.68974 113

4 KIF13A kinesin family member 13A 0.477741 68

5 RAB8A member RAS oncogene family 0.689748 64

6 CCNE2 cyclin E2 0.50645 62

7 PHIP pleckstrin homology domain interacting protein −0.10544 49

8 PBRM1 polybromo 1 −0.15817 48

9 STK38L serine/threonine kinase 38 like −0.52338 39

10 TBL1XR1 transducin (beta)-like 1 X-linked receptor 1 0.42959 37
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Fig. 7  Enrichment analysis of targets of hsa-miR-9-5p associated with glioma-associated epilepsy. a GO (BP) enrichment analysis. b GO (CC) 
enrichment analysis. c GO (MF) enrichment analysis. d KEGG enrichment analysis
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Likewise, previous studies indicate that miR-9 may act as 
a suppressor of glioma [34–36]. This may be because that 
miR-9 inhibits FOXP1 and antagonizes the tumor growth 
advantage granted by mutant epidermal growth factor 
receptor signaling [34]. In addition, hsa-miR-9 has been 
shown to reduce the migration and invasion of GBM 
cells by inhibiting the MAPKAP signaling [37]. However, 
contrary to our findings, Wu et al. reported that elevated 
miR-9 expression signals an adverse prognosis for human 
GBM and LGG [32]. In addition to the inconsistency of 
detection technique and experimental methods, a key 
reason for this discrepancy may be that they did not dis-
tinguish between miR-9-5p and miR-9-3p [33].

Previous evidence indicates that epilepsy in glioma 
improves the survival of patients with glioma [63–65], 
which prompted us to further investigate whether miR-
9-5p can be a crucial factor in this interesting phenom-
enon. There may be a connection between epilepsy and 
tumors. The top 10 hub genes SH3PXD2B, ARF6, ANK2, 
KIF13A, RAB8A, CCNE2, PHIP, PBRM1, STK38L, and 
TBL1XR1 may be the key genes involved in the induction 
of glioma-associated epilepsy. ARF6 is a member of the 
ADP ribosylation factors (ARFs) family, which controls 
various cellular functions in eukaryotic cells, including 
membrane transport and actin cytoskeleton rearrange-
ment [84]. Previous studies have found that ARF6 knock-
out mice reduce GABAergic neurons in the dentate 
gyrus (DG) region of the hippocampus, which in turn 
affects the activity of the hippocampal neuronal cluster 
in mice, and that loss of inhibition of network activity 
in the DG region of the hippocampus leads to excitabil-
ity  [84].  And GABA neurons promote the proliferation 
of glioma cells [85]. Thus, miR-9-5p may reduce the den-
sity of GABAergic neurons through targeted inhibition 
of ARF6, leading to an excitatory/inhibitory imbalance, 
which may be a key mechanism for improved survival 
for patients with glioma-associated epilepsy. But further 
studies are needed to confirm this. In addition, enrich-
ment analysis of targets of hsa-miR-9-5p associated with 
glioma-associated epilepsy indicates  signaling by Rho 
family GTPases may be a key mechanism involved in 
miR-9-5p in regulating glioma-associated  epilepsy  and 
improving survival.  The GTPases  of  Rho family  are key 
regulators of actin dynamics and play a central role in 
mediating signal transduction from extracellular stimuli 
targeting the cytoskeleton  [86].  Previous studies have 
indicated that the GTPases of Rho family are implicated 
in epileptic seizures and the maintenance of malignant 
phenotypes of glioma [86–88]. Thus the GTPase of Rho 
family may act as a common pathway for miR-9-5p afect-
ing epilepsy and glioma.

Limitations
This study had some limitations. First, this was a prelimi-
nary study based on bioinformatics methods; an in-depth 
study on the role and mechanism of miR-9-5p in epilepsy 
and glioma is needed. Second, since human specimens 
are difficult to obtain, we only collected cortical samples, 
rather than hippocampal samples, which was incon-
sistent with the use of animal specimens. In the future, 
research using glioma specimens to investigate the func-
tions and mechanisms associated with glioma and epi-
lepsy is warranted.

Conclusions
Together, our findings demonstrate that miR-9-5p may 
contribute to the pathophysiology of epilepsy, and over-
expression of miR-9-5p significantly exacerbates the 
lithium-pilocarpine-induced epileptic seizures. miR-9-5p 
may improve the survival of glioma patients and may 
underlie the phenomenon that the occurrence of epilepsy 
predicts better survival in glioma patients. Understand-
ing the effects and functional mechanisms of miR-9-5p 
in epileptic seizures and glioma may provide a theoreti-
cal basis for the diagnosis and treatment of patients with 
epilepsy and glioma.
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