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Abstract

The ketogenic diet (KD) is a high-fat, low-carbohydrate diet, in which fat is used as the primary energy source
through the production of ketone bodies (KBs) in place of glucose. The KD was formally introduced in 1921 to
mimic the biochemical changes associated with fasting and gained recognition as a potent treatment for pediatric
epilepsy in the mid-1990s. The clinical and basic scientific knowledge that supports the anti-seizure efficacy, safety,
and feasibility of using the KD in patients with epilepsy is huge. Additionally, the International Ketogenic Diet Study
Group’s consensus guidelines provide practical information in 2009 and 2018. The KD is a broad-spectrum therapy
for drug resistant epilepsy and is gaining attention as a potential therapy for other neurological disorders. This
article will review recent aspects on the use of the KD, including its mechanisms of action, KD alternatives,
expanding its use across different age groups and regions, its use as a treatment for other neurologic disorders, and
future research subjects.

History of the ketogenic diet
The ketogenic diet (KD) is a high-fat, low-carbohydrate
diet in which fat is used as the primary energy source
through the formation of ketone bodies (KBs) in place of
glucose [1]. The use of fasting in patients with epilepsy
was well recorded (from at least 500 BC) and is noted as
a treatment for epilepsy in the Hippocratic writing [2].
The KD was formally introduced in 1921 to mimic the
biochemical changes associated with fasting and gained
recognition as a potent treatment for pediatric epilepsy
in the mid-1990s [3, 4]. The clinical and basic scientific
knowledge that supports the anti-seizure efficacy, safety,
and feasibility of using the KD in patients with epilepsy
is huge. Additionally, the International Ketogenic Diet
Study Group’s consensus guidelines provide practical in-
formation on patient selection, pre-KD counseling, diet
selection and implementation, dietary supplementation,
follow-up evaluation, adverse effects, and discontinu-
ation of the diet [5, 6]. Currently, the KD should be

considered in patients after two anti-epileptic drugs
(AEDs) have failed; its application might be earlier for
specific epilepsy and genetic syndromes. The KD has
been established as one of four main treatments for
drug-resistant epilepsy (DRE), together with new AEDs,
surgery, and neuromodulation. Compared with surgical
treatment, the use of the KD is reversible, inexpensive,
and easy to access.
The introduction of KD alternatives, such as the use of

medium-chain triglycerides (MCTs), the modified
Atkin’s diet (MAD), and the low glycemic index treat-
ment (LGIT), made ketogenic therapy less complicated
and more accessible [6]. The KD has been expanded to
specific age groups such as infants and adults and intro-
duced in many countries, including resource-limited re-
gions worldwide [7–9]. Although preliminary, the KD
has also been used to treat various medical illnesses, like
as autism spectrum disorder (ASD), Alzheimer’s disease
(AD), traumatic brain injury, and brain tumors [10–12].
This article will review recent aspects on the use of

the KD, including its mechanisms of action, KD alterna-
tives, expanding its use across different age groups and
regions, its use as a treatment for other neurologic disor-
ders, and future research subjects.
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Mechanisms of action of the ketogenic diet
Over the past two decades, there has been a steady in-
crease in knowledge about the underlying mechanisms
of the KD [13–15]. The understanding of these mecha-
nisms is incomplete, but multiple mechanisms are likely
to be interconnected. Such pathways involving neuronal
excitability, energy metabolism, and neuroprotection
form the basis of many candidate mechanisms. The clin-
ical experiences of patients can be associated with these
mechanisms and applied to such diseases as mitochon-
drial disorders, febrile infection-related epilepsy syn-
drome (FIRES), and neurodegenerative disorders such as
AD and Parkinson’s disease; such associations have mo-
tivated new research studies into the mechanisms of ac-
tion of the KD [16–22].
Early clinical and research studies of the anti-seizure

mechanism of the KD have focused on KBs produced in
the liver via fatty acid metabolism. However, both clin-
ical and preclinical studies have shown inconsistent re-
sults between the diet’s anti-seizure effects and KB levels
[23]. These observations suggest that other various
mechanisms play roles.
One of the anti-seizure mechanisms of KD is to inhibit

the brain by increasing γ-aminobutyric acid (GABA).
Usually, glutamate is converted into either GABA or as-
partate, but KD depletes oxaloacetate, which is needed
to convert glutamate into aspartate. As a result, more
GABA from glutamate in CSF was generated [24]. Ad-
enosine triphosphate (ATP)-sensitive potassium chan-
nels are activated by the KD, leading to membrane
hyperpolarization that prevents neuronal excitability and
directly inhibits vesicular glutamate transport, thereby
decreasing the amount of glutamate present during syn-
aptic transmission and providing positive feedback to
GABAergic channels [25–27].
Chronic ketosis has a positive impact on mitochon-

drial biogenesis and metabolism by increasing the brain’s
energy reserves via a reduction in the excitability of
synapses, resulting in elevated levels of mitochondrial
ATP production [28]. That increased ATP leads to an
increased level of adenosine, which generates antiepilep-
tic activity through the adenosine receptors in the brain
by inhibiting the glutaminergic system or opening ATP-
sensitive potassium channels [24]. Further, when the pa-
tient receives a high-fat diet, it promotes the oxidation
of fatty acids and alters polyunsaturated fatty acids
(PUFAs) in the body. PUFAs are thought to protect neu-
rons by the stimulation of mitochondrial uncoupling
protein. Thus, the KD causes an increase in PUFAs,
which ultimately reduces the production of reactive oxy-
gen species. PUFAs can directly regulate different types
of ion pumps and channels; It blocks Na+ and Ca++

channels and opens K+ channels, thereby reducing hy-
perexcitability [29].

It is well acknowledged that inflammatory mechanisms
contribute to the pathophysiology of chronic epilepsy
and neurodegenerative disorders [30–33]. Controlling
inflammation in chronic epilepsy is essential, as shown
in the treatment with steroid-responsive infantile epilep-
tic encephalopathy and KD in FIRES [20, 34]. In
addition, preclinical and clinical studies on inflammatory
mechanisms in neurodegeneration are also continuing
[12, 35, 36]. Anti-inflammatory effects by altering both
pro-inflammatory and anti-inflammatory mediators, re-
duced interleukin 1β, and other pro-inflammatory cyto-
kines in peripheral blood and brain tissues of rats fed
with a KD, was noted [37]. However, these inflammatory
mediators fluctuate greatly subject to the tissue types
and the time of measurement [32].
There is increased interest in identifying the link be-

tween the gut and the brain, and the effects of diet on
gut microbiota appear to be significant [38–40]. In terms
of gut microbiota and KD-related anti-seizure properties,
dysbiosis can enhance susceptibility for epilepsy and ac-
celerate illness resulting from chronic restraint stress
[41]. Olson et al. proved the impact of gut microbiota on
the antiseizure effects of the KD with two mouse
models, showing an increase in beneficial Akkermansia
and Parabacteroides bacteria and a decrease in bacterial
diversity. Furthermore, this microbiota transformation
brings about changes in the colonic luminal metabo-
lome, with decreases in gamma-glutamylated amino
acids in the blood, resulting in increased GABA/glutam-
ate levels in the brain. These modifications in neuro-
transmitters’ expression might contribute to the
antiseizure effect of the KD [42]. Children with DRE
showed evidence of a reduction in the abundance and
diversity of gut microbiota, and there are differences in
the composition of gut microbiota between the re-
sponder and non-responder groups after 6 months on
the KD [43].

Alternatives and modification of the ketogenic
diet
The term “ketogenic diet” describes to any diet therapy
in which the dietary composition brings about a keto-
genic stage of metabolism. Following the development of
the classic KD, which consists of long-chain triglycerides
(LCTs), usually applied as a ratio of fat to nonfat (pro-
tein and carbohydrate) as 4:1 or 3:1, new alternative di-
ets have been proposed to increase retention and
palatability, while mimicking the effects produced by the
classic KD. There are currently four forms of KDs: the
classic KD, the MCT diet, the MAD, and the LGIT [6].
As for the MCT diet, in which fats are provided

through triglycerides comprising about 60% octanoic
acid and 40% decanoic acid. It yields more ketones per
kilocalorie from the rapid metabolism of the shorter
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fatty acids compared to LCTs [44, 45]. This increased
ketogenic potential signifies that less total fat is required
in the MCT diet, allowing for more carbohydrate and
protein consumption and broader food choices. In
addition, studies have indicated that medium-chain fatty
acids provided in the MCT diet could directly inhibit
AMPA receptors and enhance mitochondrial function
[46, 47]. With these mechanisms, the MCT diet helps in
reduction of seizure occurrence and plays positive roles
in other neurological disorders, such as AD, cancer, and
diabetes [45].
The MAD consists of a 1:1 to 1.5:1 ketogenic ratio,

with no restriction on protein, fluids, or calories, making
the diet more tolerable with easier meal planning [48].
This diet’s primary purpose is for children who have be-
havioral difficulties and are reluctant to consume the
classic KD. The LGIT involves exchanging high glycemic
index (GI) foods (e.g., most refined carbohydrates) with
low GI alternatives (e.g., meat, dairy, some unprocessed
whole-grain foods, and some fresh fruits and vegetables)
[49]. The GI is defined as the tendency of food to raise
blood sugar compared to an equivalent amount of a ref-
erence carbohydrate. While the LGIT does not necessar-
ily produce a condition of ketosis, both a decrease in
glucose metabolism and constant glucose levels play
roles in the mechanisms of action of the LGIT. There-
fore, these various diet options, such as the MAD and
LGIT, could be suitable for adolescents and adults and
initiated on an outpatient basis or used with limited re-
sources, such as dietitians in resource-limited lesions.
The efficacy of these three KD alternatives has been

compared to that of the classic KD, including in three
randomized controlled trials. While each treatment’s ef-
ficacy depends on the patient’s age, specific epilepsy syn-
drome, and etiology, these alternatives are not inferior to
classic KD treatments [50–52].
If it is necessary to maintain a KD for several years or

more due to seizure recurrence or the clinical course of
the disease, it may be practical to switch to the MAD or
LGIT and discontinue the KD when considering the
risks of long-term complications such as growth and
cardiovascular changes [6].

Expanding the use of the ketogenic diet
Although the knowledge related to the expansion of in-
dications related to specific epilepsy syndromes is essen-
tial, there is also a need to expand the age range for
which the diet is used and provide information on the
KD to more people around the world to allow better ac-
cess to its benefits [9, 53].
The first 2 years of life are critical for rapid brain

growth and psychosocial development related to synapse
formation and myelination [54]. Such young patients are
most at risk for neurodevelopmental compromises over

time. Additionally, the incidence of epilepsy is highest
during this period, and KBs constitute a significant en-
ergy source for brain development in utero and infancy
[55, 56]. Thus, active and safe use of KD at this age is
recommended.
At first, the KD was not used in infants, as it was con-

sidered that this age group could not maintain a state of
ketosis. However, the clinical efficacy and experience of
the KD in this age group have been accumulating, in-
cluding application in newborns and in cases with early
onset developmental and epileptic encephalopathy (DEE)
[57–60]. A systemic and meta-analysis of KD usage for
infants published in 2020 and updated guidelines in
2018 by the International Ketogenic Diet Study Group
reveal that KD treatment responses are confirmed to be
higher in infants than in other age groups without much
concern for side effects; Approximately 33% of infants
on the KD became seizure-free, with 59% achieving a
greater than 50% reduction in seizures [6, 61]. Also, spe-
cific guidelines for infants were created in 2016 [62].
Additional benefits of KD on cognition and behavior
have been reported [61, 63]. However, these results are
lacking consistency, and further studies are warranted.
KD’s use is expanding again by applying MAD and LGIT
to adolescents and adults, and these age groups are pre-
viously regarded unsuitable for dietary treatment due to
lack of compliance [64, 65]. Therefore, the KD’s method
used in the most challenging way in a limited group is
shifting to a more straightforward approach for broader
age groups.
Although the widespread use of the KD, the large re-

gions of the world such as the Caribbean, Central Amer-
ica, Africa, Eastern Europe, and Southeast Asia do not
offer this treatment [9, 66–68]. Therefore, encouraging
the use of the KD in more countries and regions is
needed. In addition, the rate of intractable epilepsy is
about 20–30% of patients diagnosed with epilepsy [69].
While such patients may benefit from new drugs, surgery,
and neuromodulation, these options are nearly impossible
due to the cost and lack of supplies in resource-deficient
countries. Compared to the methods mentioned above,
the use of the KD is much more achievable in these areas,
and the approach has been made easier due to the devel-
opment of KD alternatives during the last 20 years. For
this purpose, the International League Against Epilepsy
published a special report in 2015, listing the minimum
requirements for KD in resource-limited regions and pro-
viding KD workshops for healthcare providers in areas like
Indonesia, Mongolia, and Uzbekistan [9].

Use of the ketogenic diet for other neurological
disorders
The systemic action of the KD can elicit a broad
spectrum of effects, and there has been interest in
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applying the KD for neurological disorders other than
epilepsy.
Although the data are preliminary, the KD has been

used for many neurological disorders, such as ASD, AD,
brain tumors, and traumatic brain injury [10, 11]. Specif-
ically, interest in neurodegenerative disorders has arisen
through studies of neuroprotection and energy metabol-
ism related to the KD’s mechanisms [11, 70].
The updated guideline in 2018 newly included specific

genetic syndromes and epilepsy, such as FIRES and
Angelman syndrome, in the KD beneficial group, which
means the efficacy is higher (> 70%) than the average ef-
ficacy of KD [6, 71]. Through a retrospective review of
23 cases, the LGIT provides Angelman syndrome pa-
tients with a high level of seizure control with minimal
side effects [71]. In accordance with 2015 systematic re-
view, eight studies (five human and three animal) stud-
ied the effects of the KD (the classic KD or MAD) in
ASD, and the classic KD was evaluated as being the
most favorable non-AED treatment for improving sei-
zures; it also showed beneficial effects on other relevant
clinical factors connected to ASD [72]. For example, a
prospective pilot study showed that 18 out of 30 chil-
dren with autism scored better on an autism rating scale
after consuming a KD, and a case report noted that a girl
with both autism and epilepsy improved from severely
autistic to non-autistic while on a KD [73, 74].
KBs are viewed as primary mediators to prevent aging

and neurodegeneration in AD via enhanced mitochon-
drial functioning [11]. Impaired brain glucose metabol-
ism and amyloid-β plaques may lead to AD
development, and the KD likely reduces the formation of
these plaques and replaces glucose with alternative en-
ergy sources in the brain [21]. There are also reports
that medium chain fatty acid of the MCT diet plays a
more critical role than KBs itself in AD [45].
The potential anti-tumor effects of the KD are also of

growing interest. Previous studies have suggested that
the KD inhibits tumor cell growth by changing cellular
metabolism, which is likely to increase responses to
other anti-tumor treatments [75, 76]. A case study of
two glioma patients reported that the treatment of the
KD alone seemed ineffective for impeding tumor growth
but had promising effects when combined with standard
treatments, which may be explained by the control of
primary brain tumor progression by an energy-restricted
KD [76].

New research subjects
In general, the KD has been shown to improve seizure
outcomes in 50% of patients but offers no benefit to the
remaining patients. Predicting KD efficacy is an import-
ant subject; due to studies on predictive factors, such as
age, etiology, and specific epilepsy syndromes, KD

indications for groups with excellent results have been
identified [77, 78]. These predictors used to rely on clin-
ical phenotypes, but with the recent advances of genetic
testing technologies, such as next-generation sequen-
cing, physicians now can diagnose various genetic etiolo-
gies of epilepsy [79, 80]. Therefore, KD efficacy
prediction based on etiology might be necessary. Ko
et al. compared the efficacy of the KD according to spe-
cific gene mutations, discovering that the use of the KD
is effective in patients with SCN1A, KCNQ2, STXBP1,
and SCN2A mutations but ineffective to the patients
with CDKL5 mutations [57]. Other case series and inter-
national collaborating experiences in DEE have been
continuously reported [60, 81]. Thus, with genetic im-
provements, the etiology-based identification for select-
ing better candidates will be possible in the future.
Metabolic epilepsies occur in relation to rare inborn

errors of metabolism (IEM). One of the representative
clinical manifestations of certain neurological disorders,
such as rare IEM or genetic diseases in infancy, is refrac-
tory epilepsy. Although the number of IEM is rare, its
collective prevalence is 1 in 1000, and most have no
cure. Given that the KD is a primary metabolism-based
treatment that brings about a broad range of biochem-
ical, hormonal, and physiological effects, it is also pos-
sible to consider its use as a treatment for IEM [82].
The KD is the treatment of choice for two distinct dis-

orders of brain energy disorder: glucose transporter type
1 deficiency syndrome and pyruvate dehydrogenase defi-
ciency [83, 84]. The KD supplies ketones that bypass
these metabolic defects and act as an alternative energy
source in the brain. The effects of the KD have been re-
ported for other metabolic disorders, such as those of
mitochondria. Clinical findings have demonstrated that
the KD may effectively treat children with DRE associ-
ated with mitochondrial respiratory chain complex de-
fects and mitochondrial encephalopathy with lactic
acidosis and stroke-like episodes [17, 18, 85]. Before
these clinical results were published, the KD was gener-
ally thought of as a contraindicated treatment for mito-
chondrial disorders. Since the KD mechanisms were
shown to enhance mitochondrial function and biogen-
esis, the KD is now indicated and confirmed to be effect-
ive in treating mitochondrial disorders, especially
complex 1 deficiency syndrome. Although single reports,
the use of KD in other metabolic diseases, such as phos-
phofructokinase deficiency and adenylosuccinate lyase
deficiency, were listed [86, 87].
The mechanisms of action of the KD in other IEM re-

main unclear. The diet’s multiple mechanisms appear to
counter the negative consequences of genetic mutations
[82]. Moreover, its beneficial effects can be broadly cate-
gorized into the following groups: the restoration of im-
paired bioenergetics and synaptic dysfunction,
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improvements in redox homeostasis, and enhancements
in its anti-inflammatory and epigenetic activities. Thus,
it is important to try carefully to pay attention to its con-
traindications (e.g., in fatty acid oxidation disorders).

Conclusion
The KD, which was initially established as a non-
pharmacological but powerful treatment for patients
with epilepsy, reemerged in the mid-1990s in a variety of
forms. Since then, numerous mechanisms of the KD
have been proposed. Its use has been expanded to vari-
ous neurological disorders other than DRE. Also, its use
has been proved positive for broader age groups and pa-
tients with DEE or IEM, which started to become identi-
fiable with the recent genetic diagnostic technology.
With all these proven benefits, we hope to see more of
its use in resource-limited regions. Regardless of the type
of disease, age, more people are expected to benefit from
the KD.
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