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Arbovirus and seizures
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Abstract

The high prevalence and spread of arthropod-borne viruses (arboviruses) make them an important cause of viral
encephalitis in humans. Most epidemic viral encephalitides have an etiology associated with arboviruses. Among
various arboviruses, the Japanese encephalitis virus, West Nile virus, Zika virus, Dengue virus and Chikungunya virus
can induce seizures. Arboviruses of the genus Flavivirus are usually transmitted by mosquitoes and other host
animals. These vector-borne pathogens can cause epidemic viral encephalitis. Seizures may not be the major
manifestation in these viral encephalitides, but may predict a poor prognosis. In this article, we discuss the
relationships between these viruses and seizures from perspectives of clinical characteristics, pathogenesis,
prognosis and treatments of each.
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Japanese encephalitis virus (JEV)
Clinical characteristics
Japanese encephalitis (JE) is the most common form of
arbovirus encephalitis and is related to acute symptom-
atic seizures, especially in children. JEV is usually trans-
mitted by Culex mosquitoes and has a bird-pig life cycle.
Human beings are the dead-end host of the virus. Most
infected cases are in developing countries located at
Southeast Asia, Western Pacific and Eastern Mediterra-
nean regions.
Seizure is one of the major clinical manifestations of

JEV infection, but has varied frequencies of occurrence
among different reports. According to a case report in
Central Sarawak, Malaysia [1], seizures occurred in 50–
80% of infected patients, more frequently in children
than in adults. The epidemiological reports of early sei-
zures often underestimated the incidence, probably due
to the poor access to appropriate caregivers and facilities
for diagnosis. Early seizures are often detectable only by
continuous electroencephalographic monitoring (EEG)
[2], which is limited in developing countries compared
to developed countries. This results in variable

conclusions for seizure occurrence rate in JEV encephal-
itis. MRI has revealed thalamic, basal ganglia and brain-
stem involvement in JE [3]. The clinical manifestations
of subtle seizures may appear as eye, mouth or extremity
twitching/myoclonus, nystagmus, excessive salivation, or
irregular respiration [4]. The EEG patterns of JEV brain
infection include isolated discharges, periodic lateralized
epileptiform discharges, multiple seizures, continuous
seizures, and status epilepticus [5]. In a study conducted
in India, seizures occurred in 40% of JE patients, and
generalized tonic-clonic seizures were the most common
type in this case series [3].

Neuroimaging findings
The MRI characteristics of JE patients are bilateral thal-
amic lesions. These lesions show high signal intensities
in T2 and fluid attenuation inversion recovery (FLAIR)
sequences [6] (Fig. 1).
In JE, real-time monitoring of EEG is important for

appropriate treatment and enables detection of early
seizures. The general EEG findings in JE are a constant
pattern of diffuse delta activity, which is likely due to bi-
lateral thalamic involvement [8]. These characteristic
EEG findings are very common and do not predict a
poor outcome. When seizures occur, patients typically
manifest abnormalities including theta and delta coma,
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burst suppression, an isoelectric pattern, or occasionally
alpha coma [4].

Pathogenesis
Tropism with the brain
JEV’s neurotropism is a relevant factor of its pathogen-
esis. Neurotropism is not synonymous with neuroviru-
lence, but they can be associated with each other in
some cases. The JEV typically replicates in the skin be-
fore it spreads to local lymph nodes. Then it travels to
the liver, heart, kidney and other organs before crossing
the blood-brain barrier (Fig. 2). To cross the blood-brain
barrier, JEV replicates in endothelial cells or inflamma-
tory cells that carry the virus (Fig. 3).

Activated glia
In mice with central nervous system (CNS) infection
with JEV, researchers have observed activation of astro-
cytes [9]. The activated astrocytes can inhibit the intake
of glutamic acid and the synthesis of γ-aminobutyric
acid (GABA), resulting in neuronal hyperexcitability. In
addition, inwardly rectifying potassium channels are
down-regulated in epilepsy and inflammation. This may
make astrocyte unable to balance extracellular K+ con-
centration [10, 11]. Further detailed mechanisms remain
to be elucidated by more experiments.
Activated microglia are also observed in the CNS.

JEV-infected microglia can up-regulate miR-146a, facili-
tating the expression of miR-146a and the replication of
the virus [12]. On the other hand, the levels of IL-1β, IL-
6, TNF-α and other proinflammatory mediators are sig-
nificantly elevated during JEV infection. These proin-
flammatory mediators released by activated microglia
can induce neuronal loss [13]. The auto-toxic loop led
by microglial activation possibly results in proliferation
and formation of microglial nodules, contributing to the

pathogenesis of refractory epilepsy. Moreover, microglia
also participate in the formation of blood-brain barrier.
In addition, JEV has tropism for neuroblast-derived

cells [14], which may be related to the formation of ab-
normal synapses. The formation of abnormal synaptic
connections will result in abnormal discharges [15].

Further information
Research by Yao et al. showed that the expression of
miR-16-1 and heat shock protein 70 was upregulated in
astrocytes during the occurrence of epilepsy after JEV
infection [16]. Another case report led by Ma et al.
showed that JEV infection can trigger anti-N-methyl-D-
aspartate receptor encephalitis [17]. This implies an
autoimmunity-related mechanism underlying neuronal
damage by JEV. However, studies on the specific mecha-
nisms of JEV-induced epilepsy are limited because of its
rare occurrence.

Treatments
Currently, no clinically-approved therapy is available for
the treatment of any flavivirus infection [18], but
hospitalization for supportive care is generally required
[19]. Therefore, complications such as seizures should
be diagnosed at an early time for appropriate treatment,
and AED treatment is indicated for neonatal seizures,
which may be subclinical.

Prognosis
The prognosis of epilepsy is determined by etiology, se-
verity, site of infection, and certain host factors [20].
Timely and effective control of seizures is an important
measure to improve prognosis. Antiepileptic drugs are
commonly used to treat epilepsy after infection. Yet, due
to the lack of effective treatment of CNS infection, it is
difficult to prevent post-encephalitic epilepsy.

Fig. 1 Characteristic changes on MRI with FLAIR sequence on day 1 (a) and day 5 (b) of JEV patients [7]
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It is important to note that seizures in JEV infection
often indicate a poor prognosis. Around 20% of patients
who survive the acute JEV infection develop long-term
seizures. More detailed studies assessing long-term
consequences are lacking in epidemic regions. Timely
diagnosis and treatment of seizures may reduce the asso-
ciated damage to the brain and improve the prognosis
by preventing increased intracranial pressure, brain her-
niation and death. As long-term seizures may occur as a
result of epileptogenesis due to cortical dysfunction,

timely medical treatment is the best choice to find and
control early seizures in arbovirus-infected patients.

West Nile virus (WNV)
WNV is related antigenically to the JE antigenic complex
of the Flaviviradae family, so the pathogenesis of WNV
infection is very similar to that of JEV. Humans and
horses are the dead-end hosts of WNV. Horses are com-
monly recognized to develop symptomatic infections.
Seizures are not a common symptom for WNV

Fig. 2 The process of JEV infection in the human body

Fig. 3 The process of JEV across the blood-brain barrier

Zheng et al. Acta Epileptologica            (2020) 2:17 Page 3 of 7



infection, and their occurrences are also lower than
those in JEV. WNV-associated epilepsy is rarely re-
ported. In a report of WNV disease outbreak in Pakistan
[21], 15% of patient with confirmed WNV had seizures.
In addition, there are no definitive reports of prognosis
of WNV-associated seizures.

Clinical characteristics
In recent studies, most WNV infections are asymptom-
atic. Only 20% of patients manifest some mild symptoms
such as flu-like illnesses. Virus entry into the CNS oc-
curs in < 1% of the symptomatic individuals. However,
in horses, the percentage of neurologic symptoms is
10%. Older patients tend to have a higher frequency of
severe neurological symptoms and higher mortality.
While the incidence varies between series, seizures ap-
pear uncommon in West Nile encephalitis and are esti-
mated to occur in 3 to 6% of patients [22].

MRI
The most characteristic MRI findings in West Nile en-
cephalitis patients are bilateral signal abnormalities in
the basal ganglia and thalami on T2, FLAIR and
diffusion-weighted image sequences, indicating possible
viral neurotropism for these deep gray structures [23].
However, these findings are not specific, which means
that they can also appear in other Flavivirus encephaliti-
des. In fact, MRI is not a sensitive diagnostic tool for
West Nile encephalitis because sometimes MRI findings
can be normal even in severe cases [24–26].

Pathogenesis
The frequency of seizures in WNV-infected cases is low,
as previously discussed. As mentioned above, WNV
entry to the CNS is uncommon and therefore poorly
documented, but several possible routes for entry have
been proposed: (1) entry through the blood-brain barrier
disrupted by TNF-α, IL-1β and certain macrophage mi-
gration inhibitory factors [27, 28]; (2) entry through
choroid plexus epithelial cells [29]; (3) infecting olfactory
neurons and spreading via the olfactory bulb [30] (also
seen in other flaviviruses); and (4) entry through infected
immune cell infiltration into the CNS [30].

Treatments
Treatment for WNV infection is also mostly supportive.
Seizures, although rare, should be appropriately treated
to reduce possible complications such as increased intra-
cranial pressure.

Zika virus (ZIKV)
ZIKV is another member of the flavivirus family. About
80% of ZIKV infections are asymptomatic. The associ-
ation with seizures has only been described recently.

Analysis of clinical data shows that ZIKV infection in
pregnant women is related to infant congenital micro-
cephaly [31], an extreme consequence with spontaneous
epileptic activity developing in 50–60% of microcephalic
babies congenitally infected with ZIKV [32, 33]. There-
fore, we discuss in the following the possible relationship
between seizures and ZIKV-induced microcephaly.

Clinical characteristics
ZIKV infection is asymptomatic in three of every four
infected patients [34]. Most symptoms are mild and self-
limited, and often disappear within a week. The only
two exceptions are Guillain-Barré syndrome and micro-
cephaly. Microcephaly is a neurological condition gener-
ally associated with severe brain malformations. The
increased incidence of microcephaly among children in
Brazil has been accounted for by several reasons, includ-
ing the rise of ZIKV infections, and seizures appear to
be a common symptom in ZIKV-induced microcephalic
infants.
Although microcephaly does not manifest in all

neonates infected by ZIKV in utero, seizures are also
observed in neonates without microcephaly [35]. Con-
genital Zika syndrome (CZS) is a common manifestation
in neonatal infection cases. CZS manifests as a conse-
quence of direct neurological insult and severe intracra-
nial volume loss [36]. The inhibited neurogenesis and
increased neuronal apoptosis over progenitor cells in
CZS result in microcephaly, facial disproportionality,
hypertonia, hyper-reflexia and irritability [37, 38]. Hear-
ing and visual loss are also seen in CZS infants [36].
Seizures are the major complication among CZS infants
in the first 4 months of life [39].

CT and MRI
In microcephaly-induced by ZIKV infection, the most
common neuroimaging features are calcifications in the
junction between cortical and subcortical white matter,
which are associated with malformations of cortical de-
velopment. Additional findings are an enlarged cisterna
magna, corpus callosum abnormalities, ventriculomegaly,
delayed myelination, and cerebellum and brainstem hy-
poplasia [40].

Pathogenesis
Microcephaly is usually divided into two types--primary
or congenital microcephaly and secondary or post-natal
microcephaly [41, 42]. The primary microcephaly is usu-
ally due to the reduced amount of neurons, while the
secondary microcephaly is often due to the decreased
dendritic processes and synaptic connections. Both types
of microcephaly can develop with seizures.
In cases that do not manifest microcephaly, the patho-

genesis is similar to JEV–brain inflammation. In research

Zheng et al. Acta Epileptologica            (2020) 2:17 Page 4 of 7



by Nem de Oliveira Souza et al. [43], ZIKV induced
spontaneous seizures in young mice, and there was an
increased level of proinflammatory cytokines in the pla-
cental tissue and neonatal brain, accompanying viral
replication.

Treatments
Neonatal seizures have low response to conventional
anticonvulsant drugs [44] and may require multiple anti-
seizure medications. In murine models, researchers
found that early inhibition of TNF-α-mediated neuroin-
flammation may be an effective therapeutic strategy to
prevent the development of chronic neurological abnor-
malities [43]. More importantly, tests for ZIKV infection
should be run in early pregnancy or before pregnancy to
prevent neonatal CNS malformations and other
abnormalities.

Prognosis
Since most ZIKV infections are asymptomatic, most pa-
tients go untreated and have a good prognosis. Severe
cases such as neonatal ZIKV infection should receive
seizure assessment and appropriate treatment from
health care professionals. However, the overall prognosis
of severe cases is typically poor.

Dengue virus (DENV)
DENVs are transmitted by A.aegypti mosquitoes. 75% of
DENV infections are asymptomatic. The major clinical
manifestations are systematic signs and symptoms with-
out associated epileptic seizures, with rare exceptions.

Clinical characteristics
Although seizures and epilepsy are not a common mani-
festation in a dengue infection, they are more likely to
occur if patients develop neurological symptoms. An in-
vestigation in Thailand [45] shows that among 1 493
children diagnosed with dengue infection, 5.4% of them
developed neurological manifestations, including sei-
zures in 67%. In some individual case reports, the pa-
tients with severe, fatal dengue fever could have
concomitant seizures [46, 47].

Pathogenesis
Similar to JEV, DENV is able to cross the blood-brain
barrier and have tropism to the brain. However, it repli-
cates in the CNS, while JEV replicates in the skin where
mosquitoes inject JEV. In some neurophathological aut-
opsy studies, DENV and its antigen are found in brain
tissues without histological inflammatory features [48–
52]. This is probably why DENV causes a lower rate of
seizure occurrence.
The occurrence rate of DENV neuroinfection remains

unknown. It has been shown to occur preferentially in

immune- or neurological-immature murine models, yet
there are cases of adult patients without any sign of im-
mune system impairment [53].

Chikungunya virus (CHIKV)
CHIKV was newly discovered in Puerto Rico in May
2014, and is mainly transmitted by mosquitoes of the
Aedes genus (A.ageypti and A.albospictus) [54].

Clinical characteristics
Unlike ZIKV and DENV, most individuals with CHIKV
infection are symptomatic. The major symptoms of
CHIKV infection are similar to dengue fever. Other
manifestations include arthralgias and myalgias, and
neurological complications in severe cases. Seizures are
a common neurological manifestation in CHIKV-
infected children [55–58].

Pathogenesis
CHIKV has tropism for fibroblasts in the dermis, joint
capsules and muscles. Human epithelial and endothelial
cells can also be infected by CHIKV [59]. However,
CHIKV cannot invade neural tissue or replicate in
neurons [60]. There are no related autopsy and histo-
pathological studies, so the target cells of CHIKV in the
human brain remain unknown [60]. In experimentally
infected mice, the virus preferentially infects astrocytes
[61].

Prognosis
Early seizures can be subtle, so EEG is needed for diag-
nosis. As a result, hospital care is necessary for patients.
However, there are also counterexamples. A report of an
outbreak of Chikungunya Virus in 2014 [62] suggested
that seizures occurred more frequently in hospitalized
patients than non-hospitalized patients.

Treatments
There is no specific treatment for CHIKV infection.

Discussion
To treat epilepsy after arbovirus infection effectively, more
information on specific mechanisms is needed. Most sei-
zures triggered by arbovirus infection are induced by viral
encephalitis. Only neurotropic viruses have abilities to in-
vade, infect and subsequently replicate within the human
nervous system. Epilepsy in viral encephalitis is mainly
caused by direct cell damage by the virus and secondary
inflammatory responses, during which glia and cytokines
are active players. The associated damage to the blood-
brain barrier also contributes to seizure occurrence.
Flavivirus nonstructural protein 1 (NS1), which is se-

creted by related flaviviruses and circulates in the host
blood stream [63], triggers tissue-specific vascular
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endothelial dysfunction. In a study led by Puerta-Guardo
and colleagues [64], the pathophysiology of each flavivi-
rus is highly related to NS1. NS1 from different flavi-
viruses alter the human endothelial cell permeability in
certain tissues at different degrees. For DENV, NS1 can
enhance the endothelial permeability in all tissues so
DENV usually causes systemic manifestations. NS1 from
JEV and WNV can increase the endothelial permeability
in brain tissues, promoting induction of encephalitis.
Due to the high relevance between neuroinflammation
and seizures as previously discussed, this factor explains
why JEV induces seizures in a higher frequency as com-
pared to other flaviviruses. However, why WNV is anti-
genically similar to JEV while having a much lower rate
of neurological symptoms remains unclarified. NS1 from
ZIKV has a high concentration in the human placental
tissue and developing brain, inducing hyperpermeability
of the umbilical vein and brain endothelial cells. This
may explain the occurrence of neonatal congenital
microcephaly after ZIKV infection during pregnancy.

Further directions
Given the limited treatment options for flavivirus CNS in-
fections and associated seizures, there is a great need for
further research to determine the underlying associated
pathophysiological causes. Barriers to research include a
lack of suitable animal models for testing CNS arbovirus
infections [65]. The relationship between neuroinflamma-
tion caused by these viruses and seizures requires further
research. Animal models for seizures induced by infection
can be established in rabbits, rats and mice. However,
these animals often develop acute encephalitis before sei-
zures occur. The unpredictable rate of seizures in animal
models is another important barrier for further research.
There is still a great need of appropriate animal models
for viral infection-induced seizures.

Conclusions
Flavivirus infections are associated with neurological dis-
eases, including seizures and epilepsy. The type of flavi-
virus plays an important role in the probability of CNS
involvement and associated seizures after viral infection.
Appropriate clinical care requires cautions of possible
flavivirus infection, as well as involvement of seizures.
Specifically, some patients will require appropriate EEG
recording to detect seizures. Effective treatment of asso-
ciated epileptic seizures enables good supportive care
and optimal control of CNS-related comorbidities.
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