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Abstract

Background: Progressive myoclonic epilepsy (PME) is a group of neurodegenerative diseases with genetic
heterogeneity and phenotypic similarities, and many cases remain unknown of the genetic causes. This study is aim
to summarize the clinical features and study the genetic causes of PME patients.

Methods: Sanger sequencing of the target gene, Next Generation Sequencing (NGS) panels of epilepsy, trio-based
Whole Exome Sequencing (WES) and detection of cytosine-adenine-guanine (CAG) repeat number were used to
investigate the genetic causes of PME patients.

Results: Thirty-eight children with PME whose seizure onset age ranged from 3months to 12 years were collected
from February 2012 to November 2019 in three hospitals in Beijing, China. The seizure types included myoclonic
seizures (n = 38), focal seizures (n = 19), generalized tonic-clonie seizure (GTCS) (n = 13), absence seizures (n = 4),
atonic seizures (n = 3), epileptic spasms (n = 2) and tonic seizures (n = 1). Twenty-seven cases were sporadic and 11
had family members affected. Established PME-related genes were identified in 30 out of 38 (78.9%) patients who
had either recessively inherited or de novo heterozygous mutations. Among these 30 cases, there were 12 cases
(31.6%) of neuronal ceroid lipofuscinoses (the causing gene contains TPP1, PPT1, CLN5, CLN6 and MFSD8), two cases
of sialidosis (the causing gene is NEU1), two cases of neuronopathic Gaucher disease (the causing gene is GBA), one
case of spinal muscular atrophy-progressive myoclonic epilepsy (the causing gene is ASAH1), four cases of KCNC1
mutation-related PME, four cases of KCTD7 mutation-related PME, two cases of TBC1D24 mutation-related PME, one
case of GOSR2 related PME, and two of dentatorubral-pallidoluysian atrophy (the causing gene is ATN1). In total, 13
PME genes were identified in our cohort. The etiology was not clear in eight patients.

Conclusion: PME is a group of clinically and genetically heterogeneous diseases. Genetic diagnosis was clear in
78.9% of PME patients. Various of genetic testing methods could increase the rate of genetic diagnosis. Neuronal
ceroid lipofuscinoses (NCL) is the most common etiology of PME in children. Nearly one third PME children were
diagnosed with NCL. GOSR2 related PME was in our cohort in Asia for the first time.
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Background
Progressive myoclonic epilepsy (PME) is a group of re-
gressive neurologic diseases. The clinical features of
PME include myoclonus, multiple seizure types, progres-
sive neurological regression, and cerebral and/or cerebel-
lar atrophy [1, 2]. Some PME cases had distinguishing
biomarkers, such as lysosomal enzyme tripeptidyl pep-
tidase (TPP1) enzyme or lysosomal palmitoyl protein
thioesterase (PPT1) for neuronal ceroid lipofuscinoses
(NCL) and characteristic clinical feature, such as cherry
red spot in the maculae for Sialidosis, which could help
us to make accurate disease diagnosis and to choose ap-
propriate genetic tests. However, in most cases, there are
a lack of distinguishing clinical features or biomarkers.
Consequently, many cases remain unknown of the gen-
etic causes. With the clinical application of the next gen-
eration sequencing (NGS), more and more PME related
genes were identified [3–8]. We have summarized the
genetic and clinical features of 26 PME patients in pre-
liminary work [9].
This study is aim to summarize the clinical features of

38 children who were diagnosed with PME, and to iden-
tify the causes by choosing appropriate genetic testing
methods. The PME patients were collected from three
hospitals (Peking University First Hospital, Xuanwu
Hospital and Beijing Children’s Hospital) in Beijing
China from February 2012 to November 2019.

Materials and methods
PME is characterised by myoclonic seizures, tonic-clonic
seizures, and progressive neurological deterioration, typ-
ically with cerebellar signs and dementia [10]. The pa-
tients included in this study met the following criteria
[11]: (1) Myoclonic seizures, with or without generalized
convulsive seizures; (2) Mental and/or motor develop-
ment delay or regression, and the patients could have or
not have the features as (3) Cerebellar ataxia; (4) Cere-
bral and/or cerebellar atrophy.
The clinical data and peripheral blood DNA from chil-

dren with PME and their parents and other family mem-
bers were collected. This study was approved by the
Ethics Committee of Peking University First Hospital.
Parental written informed consent was obtained for all
children enrolled in this study.
Sanger sequencing of the target genes was conducted in

children who had specific clinical feature or biochemical
results. For example, the sanger sequencing for TPP1
would be done when tripeptidyl peptidase 1 activity defi-
ciency was found, NEU1 would be tested when cherry red
spot in the maculae was observed, and GBA would be
tested when deficiency of the lysosomal enzyme, glucocer-
ebrosidase was found. NGS panels of epilepsy and trio-
based Whole Exome Sequencing (WES) were performed
in children without distinguish biomarkers. Two families

had clinical features of Dentatorubral-pallidoluysian atro-
phy (DRPLA), then the probands and affected family
members received the detection of cytosine-adenine-
guanine (CAG) repeat number.

Results
Thirty-eight patients diagnosed with PME were enrolled
in this study. In the 38 patients, the onset symptoms were
seizures in 30 patients, mental and/or motor developmen-
tal regression in seven patients, and thrombocytopenia
and spleen enlarged in one patient. The seizure onset age
ranged from 3months to 12 years. Seizures were captured
in 20 patients during electroencephalogram (EEG) record-
ing, which including myoclonic seizures (n = 16), focal sei-
zures (n = 3), GTCS (n = 1), absence seizures (n = 3),
atonic seizures (n = 2), epileptic spasm (n = 2) and tonic
seizure (n = 1). Brain magnetic resonance imaging (MRI)
was abnormal in 26 patients. Four patients had cerebral
atrophy, 14 patients had cerebral and cerebellar atrophy,
six patients had cerebellar atrophy, and two patients had
brain atrophy with abnormal signals in cerebellar. Brain
MRI was normal in 12 patients.
Among the 38 patients, 27 were sporadic, 11 were

from families with pedigrees suggestive of either domin-
ant or recessive inheritance. The pedigrees of 11 families
were shown in Fig. 1. The clinical details of the 38 pa-
tients were shown in Table 1. Recessively inherited or a
de novo heterozygous mutations in established PME
genes were identified in 30 patients (78.9%, 30/38). The
gene testing results of the 30 patients were showed in
Fig. 2. The genetic causes remained unknown in eight
children. All variants and the pathogenic analysis are
listed in Table 2.

Mutations in well-recognized PME genes
Sixteen children had mutations in well-recognized PME
genes. Seven genes were identified, including TPP1,
PPT1, CLN5, CLN6, CLN7(MFSD8), NEU1 and GBA.
One child (P9) was found with one variant in CLN3
inherited from her father.
Pathogenic or likely pathogenic variants in NCL-

associated genes were identified in 12 children whose
clinical features were consistent with the diagnosis of
NCL, including TPP1 in six children, PPT1 in two chil-
dren, CLN5 in one child, CLN6 in one child, and MFSD8
(CLN7) in two children.
Six children accepted the test for specific lysosomal

enzyme. Five children were found the lack of lysosomal
enzyme TPP1 activity, and all of them had mutations in
TPP1. Among the five children, one (P6–1) was found
with a missense variant (p.Ser538Tyr) and 1 to 3 exons
deletion in TTP1.The result was confirmed by Real-time
Quantitative PCR (qPCR) (Fig. 3). Enzyme TPP1 activity
was also very low in her younger sister (P6–2) who was
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found with the same genotype of P6–1. No clinical man-
ifestations at the last follow-up (2 years of age) were ob-
served in P6–2, and further follow-up was needed.
One child (P10) was found PPT1 enzyme deficiency,

he was identified with homozygous missense CLN5 mu-
tations (p.Trp151Arg) by trio-based WES. He had seiz-
ure onset at the age of 5 years and 7months, recognition
regression was also observed. EEG recordings showed
generalized epileptiform discharges, and the brain MRI
scans showed cerebellar atrophy.

One child (P9) was found with one variant in CLN3
inherited from her father by trio-based WES. The other
variant or Copy number variations (CNVs) had not been
found even after reanalyzing the sequencing data care-
fully. The genetic diagnosis of P9 was not clear. Maybe
the whole genome sequencing could be used to find
disease-causing genes. She had seizure onset at the age
of 2 years and 11months, the seizure types included
myoclonic seizure, focal seizure and generalized tonic-
clonic seizure (GTCS). Recognition regression was

Fig. 1 The 11 family pedigrees of proband and other affected members. SMA-PME: spinal muscular atrophy-progressive myoclonic epilepsy; PME:
progressive myoclonic epilepsy; DRPLA: dentatorubral-pallidoluysian atrophy; TPP1: lysosomal enzyme tripeptidy l peptidase; EEG: electroencephalogram
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observed at 3 years old. EEG recordings showed general-
ized epileptiform discharges, and the brain MRI scans
showed Cerebral atrophy.
Two unrelated children (P14 and P15–1) had the same

compound heterozygous mutations in NEU1 (p.Ser182Gly
and p.Pro80Leu). P14 had a cherry red spot in the macu-
lae of both eyes and her genetic testing was conducted by
NGS epilepsy panel. Another P15–1 had atrophy of the
optic nerve in both eyes, and her elder brother (P15–2)
had similar phenotype and the same genotype. According
to the clinical manifestation, they were suspected of the
diagnosis of sialidosis. Mutations of NEU1 were detected
by sanger sequencing. Combining with the clinical pheno-
type and gene result, they were diagnosed with sialidosis.
Two children (P16–1 and P17–1) had mutations in

GBA and deficiency of the lysosomal enzyme glucocer-
ebrosidase, both of them had mental and motor develop-
ment delay or regression and seizures, and they were
diagnosed with neuronopathic Gaucher disease. P16–1
was found with three variants in GBA, the variant
p.Asn227Ser was paternal, the variants p.Leu483Pro and
p.Asp448His were maternal. The three variants are
pathogenic or likely pathogenic according to the Ameri-
can College of Medical Genetics and Genomics (ACMG)
guidelines [23]. Her younger brother (P16–2) only had
liver and spleen enlarged without neurologic manifesta-
tions, who had the same three variants in GBA. P16–2
was diagnosed with Gaucher disease type-I. P17–1 had
compound heterozygous mutations in GBA, p.Leu303Ile
and p.Leu422Profs*4. The younger brother (P17–2) was
found with the same mutations in GBA, but he only had
electroencephalograph abnormality at 8 years old. The

last follow age of P17–2 was 11 years old, and he had no
seizures or any other clinical symptoms. The further
follow-up was needed.

Mutations in newly reported PME-related genes
Twelve children were found with newly reported PME-
related gene mutations. Five genes were identified, in-
cluding ASAH1, KCNC1, KCTD7, TBC1D24 and
GOSR2.
One patient (P18–1) manifested with severe motor de-

velopment regression at the age of 1 year and 2months,
followed by frequent myoclonic seizures at the age of 3
years and 9months. She died of status epilepticus at the
age of 6 years. Her younger brother (P18–2) had similar
clinical manifestations. The genetic testing by NGS epi-
lepsy panel showed that both of them had compound
heterozygous mutations in ASAH1 (p.Thr102AsnfsTer14
and p.Thr58Met). Combined with the phenotype and
genotype features, they were diagnosed with spinal mus-
cular atrophy-progressive myoclonic epilepsy (SMA-
PME).
Four children were found with de novo heterozygous

mutations in KCNC1. The genetic testing of three were
by trio-based WES, and one by NGS epilepsy panel.
Two children (P21 and P22) had the same mutation
p.Arg320His in KCNC1, which affected a highly con-
served arginine residue in segment S4. This variant was
reported to be a recurrent mutation [5, 24]. Two chil-
dren (P19 and P20) were identified with the mutation
p.Ala421Val in KCNC1, which was in the segment S6.
What interesting is that we found the phenotypic differ-
ences were associated with different genotypes. The

Fig. 2 The gene testing results of 30 patients with established PME genes. PME: progressive myoclonic epilepsy; DRPLA: dentatorubral-
pallidoluysian atrophy; SMA-PME: spinal muscular atrophy-progressive myoclonic epilepsy; NCL: neuronal ceroid lipofuscinoses
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seizure onset age of two children with mutation
p.Ala421Val were 3 and 4months old respectively, and
the seizure onset age of two children with mutation
p.Arg320His were 11 years and 9months and 10 years
old respectively. The seizure onset age of children with
the variant p.Ala421Val is much earlier than that of with
the variant p.Arg320His. MRI scans were normal in four
children with KCNC1 mutations, and the last follow-up
age was ranged from 3 years and 5months old to 13
years and 3months old.
Four children (P23, P24, P25–1 and P26) were found

with compound heterozygous mutations in KCTD7 by
trio-based WES and NGS panel of epilepsy respectively.
Their clinical phenotypes were similar, and the seizure
onset age was between 1 year and 5months to 2 years
and 1month old. Frequent myoclonic seizures and
atonic seizures were common, and GTCS were rare.
EEG recordings showed generalized epileptiform dis-
charges with large number of discharges in Rolandic
area in some cases. MRI scans were normal in four chil-
dren, and the last follow-up age was ranged from 3 to
10 years and 6months old. There were eight different
variants in four children, and no recurrent variants were
found. The elder brother (P25–2) of P25–1 had similar
clinical manifestations and the same genotype
(p.Leu147Pro and p.Ala174Thr).
Compound heterozygous mutations in TBC1D24 were

identified in two children (P27 and P28) by trio-based
WES and NGS panel of epilepsy respectively, they were
p.81_84del in both children, p.Gln385Ter and
p.Ser47Gly in one child each. Two patients exhibited
similar clinical phenotypes. The seizure onset age was at
7 and 3months respectively. The frequent multifocal
myoclonus was prominent feature, which could last for
several hours to 2 weeks and developed into epilepsia
partialis continua (EPC). The EPC could be triggered by
fever or infections and could be terminated by sleep or

sedation drugs especially by chloral hydrate. The multi-
focal myoclonus and ictal scalp EEG data lacked clear
correlation. Both of the two children were found with
cerebral and cerebellar atrophy with abnormal signals in
cerebellar, which have been described in our previous
publication [25]. P27 was found to have sensorineural
deafness at the age of 9 years after a severe EPC which
last for 14 days, and her hearing was normal before this
EPC.
One child (P29–1) was found with two novel variants

in GOSR2 (p.Glu49AspfsTer25 and c.478-16 T > A) by
trio-based WES. Her younger brother (P29–2) who had
similar clinical phenotype harbored the same variants.
The seizure onset age of them was 11 and 8 years old re-
spectively. Seizure types included myoclonic seizures
and GTCS. The motor development regression was
prominent, and they could hardly walk steadily at the
age of 13 and 9 years respectively. Their EEG recordings
showed generalized epileptiform discharges. The brain
MRI scans showed cerebral and cerebellar atrophy in
both children. The frameshift variant p.Glu49AspfsTer25
was pathogenic according to ACMG guidelines. The
splice-site variant c.478-16 T > A was uncertain signifi-
cant according to ACMG guidelines.

Two dentatorubral-pallidoluysian atrophy families
The patient P30–1 had seizures at the age of 6 years
and 7 months, the seizure types included myoclonic sei-
zures, focal seizures and GTCS. He had severe mental
retardation and motor development regression. EEG re-
cordings showed generalized epileptiform discharges.
The brain MRI scans showed cerebral and cerebellar at-
rophy. There were six family members affected in family
of P30–1. His father (P30–2), two uncles (P30–4 and
P30–5) and grandmother (P30–6) were found to walk
unsteadily with recognition regression at the age of 30 to
45 years, but they did not had seizures. His cousin (P30–

Fig. 3 Real-time quantitative PCR results of patient P6–1 and her parents. The qPCR results confirmed the deletion of exons 1–3 in TPP1 gene in
patient P6–1 and her father as compared to a normal control
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3) had seizure attacks at the age of 10 years, and he died
in sleep at the age of 18 years, which could be sudden
unexpected death in epilepsy (SUDEP). Multiple family
members had similar clinical manifestations suggested a
genetic cause. However, the trio-based WES did not find
any disease related gene mutations. Reanalyzed the fam-
ily history and clinical phenotype, we observed anticipa-
tion, a phenomenon characterized by the earlier age of
onset and more severe phenotype in successive genera-
tions in this family. In addition, the patient could be di-
agnosed with PME. Therefore, the patient was diagnosed
with DRPLA.
DRPLA is an autosomal dominant neurodegenerative

disorder caused by CAG triplet expansion in atrophin 1
(ATN1). Fragment analysis with laser induced fluores-
cence in capillary electrophoresis was performed for the
CAG repeats of ATN1. Expanded CAG repeats of ATN1
were detected in probands and the affected family mem-
bers. The CAG repeats number of proband (P30–1), his
father (P30–2), one of the affected uncles (P30–5) were
70, 63 and 62, respectively. The CAG repeats number of
his mother (family 30-II-14) and uncle (family 30-II-9)
with normal phenotype were less than 20.
The family of P31–1 had clinical phenotypes similar to

the family of P30–1. Five family members were affected
in family of P31–1. The patient P31–1 had seizure onset
at the age of 3 years, and he exhibited walking unsteadily
with intelligence regression at the age of 8 years. The
clinical details of his younger brother (P31–2), his father
(P31–3), his grandfather (P31–4) and his aunt (P31–5)
were shown in Table 1. Expanded CAG repeats of ATN1
were also detected in proband and the affected family
members. The CAG repeats number of proband, his
younger brother and his father were 73, 74 and 63 re-
spectively, whereas the repeats number of his mother
(family 31-III-4) and grandfather (family 31-II-3) with
normal phenotype were less than 20 and 56 respectively.

The genetic causes remained unknown in seven children
The genetic causes remained unknown in seven chil-
dren. The onset symptoms of the seven children were
seizure attack, and the onset age ranged from 4months
to 11 years old. The seizure types included myoclonic
seizures in seven children, focal seizures in three chil-
dren, tonic seizure in one child, epileptic spasm in two
children and GTCS in one child. All of the seven chil-
dren had mental retardation and motor development re-
gression. The EEG recordings showed generalized
epileptiform discharges in seven children, focal epilepti-
form discharges in three children and hypsarrhythmia in
two children. The brain MRI scans showed cerebral and
cerebellar atrophy in four children, cerebral atrophy in
two children. The brain MRI scan was normal in one
child when she was 7 years old in the last follow up.

Seven children were all diagnosed with PME according
to the clinical features, EEG and MRI results. All seven
children received trio-based WES, but none of them
were found with disease causing mutations. Metabolic
laboratory screening was also performed in seven chil-
dren, and the results were normal.

Discussion
PME is a group of neurodegenerative diseases with gen-
etic heterogeneity and phenotypic similarities. It is a
challenge to make precise clinical diagnosis of specific
forms of PME. However, detailed clinical information,
history collection, necessary examination and laboratory
test could help to make the final diagnosis. The proper
genetical testing method may also assist in making pre-
cise etiological diagnosis.
More than 30 genes were reported to be related with

PME [5, 10, 26]. It was difficult to sequence all the genes
one by one. NGS technology enables massively parallel
sequencing of multiple genes, which enables fast and
comprehensive genetic analysis [27]. However, NGS
does not reliably detect triplet repeat expansions, and
CAG repeat number analysis was required when DRPLA
was considered as the clinical diagnosis [28]. In this
study, sanger sequencing of the target gene, NGS panels
of epilepsy, trio-based WES and detection of CAG repeat
number were used to investigate the genetic causes.
Consequently, 78.9% (30/38) children reached genetic
diagnosis, and 13 genes related to PME were identified
in our study. Muona et al. exome-sequenced 84 unre-
lated PME patients of unknown cause and molecularly
solved 31% cases [5]. The rate of genetic diagnosis of
our study was higher than Muona et al., which suggested
that various of genetic testing methods should be con-
sidered in order to improve the molecular diagnostics of
PME.
DRPLA is an autosomal-dominant disorder, caused by

unstable expansion of CAG repeats of ATN1 [10]. The
expanded repeats are unstable and tend to expand fur-
ther, which leads to earlier age onset and a more severe
phenotype in successive generations. This phenomenon
is known as anticipation [28]. Some individuals carried
alleles of intermediate repeat length, which are not large
enough to cause disease, but are large enough to be
prone to further expansion in the next generation [29].
Schols et al. reported that the intermediate repeat
ranged from 36 to 49 in DRPLA [28]. In our study, the
grandfather (family 31-II-3) of P31–1 had normal clin-
ical phenotype, however, his CAG repeats number in
ATN1 was 56, which was larger than 50, and was trans-
mitted to next generation with expanded copies. This
suggested that the intermediate repeat could be longer
than what it is supposed to be.
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In our study, the child P10 was found lysosomal PPT1
deficiency. Homozygous missense mutations c.451 T > C
(p.Trp151Arg) in CLN5 were identified using WES. This
phenomenon suggested NCL proteins may share com-
mon functions or participate in the same biological path-
way or process [30]. There are 13 known proteins of
NCL family. Unfortunately, the precise functions of
many NCL proteins are still unclear. PPT1/CLN1 is one
of the lysosomal enzymes, and CLN5 is a soluble lyso-
somal protein [30, 31]. Lyly, et al. demonstrated a close
relationship between CLN5 and PPT1/CLN1 proteins by
showing the protein interactions between the two and
significantly increased expression levels of Cln1 mRNA
in the Cln5−/− mouse brain tissue. Their results suggest
a possible compensatory role for PPT1 in CLN5 defi-
ciency [32]. Those studies could help to explain the
phenomenon in our study. However, in our patient with
homozygous missense mutations CLN5, PPT1/CLN1 de-
ficiency existed in peripheral blood, but it was difficult
to know for sure whether the expression level of PPT1
decreased in his brain tissue.
In our study, PME related gene mutations were identi-

fied in 30 patients, and 12 of which (31.6%) were found
with mutations in NCL related genes (PPT1, TPP1, CLN5,
CLN6 and MFSD8). The most prevalent gene was TPP1,
which was identified in six (15.8%, 6/38) children. KCNC1
and KCTD7 mutations were found in four children
(10.5%, 4/38) for each. In the study of Muona et al., 11 un-
related exome-sequenced patients (13%) were identified
with the same recurrent de novo mutation c.959G >A
(p.Arg320His) in KCNC1, which accounts for the most in
26 molecularly solved patients [5]. The incidence of
KCNC1 in our study was close to that in the study of
Muona et al.
Apart from p.Arg320His, we found another recurrent de

novo mutation c.1262C > T (p.Ala421Val) in KCNC1
which could also cause PME. Interestingly, the phenotype
was related to genotype. The seizure onset age of two chil-
dren with the mutation p.Ala421Val was 3 and 4months
respectively. Three sporadic children were also reported
to harbor the mutation p.Ala421Val, and the seizure onset
age of them were 5months, 3 weeks and 5months re-
spectively [33]. However, the seizure onset age of two chil-
dren with mutation p.Arg320His in our study were 11
years and 9months of age and 10 years old respectively,
and the seizure onset age of 22 children in reported study
were 3 to 15 years [5, 24]. Apparently, the seizure onset
age of patients with mutation p.Ala421Val is much earlier
than that of patients with mutation p.Arg320His.
The onset age varied in PME patients with different

genes. In this study, the onset age is before 3 years old for
all children who diagnosed with CLN1 (PPT1), SMA-PME
(ASAH1), KCTD7 related PME and TBC1D24 related PME,
and also for some children who diagnosed with CLN2

(TPP1), CLN7 (MFSD8), KCNC1 related PME and DRPLA
(ATN1). Moreover, the onset age could be earlier than 1
year old for some children who diagnosed with CLN1
(PPT1), KCNC1 related PME and TBC1D24 related PME.
The homozygous missense mutations c.430G > T

(p.Gly144Trp) in GOSR2 was firstly reported in four un-
related PME patients in 2011 [8]. The main clinical fea-
tures of the GOSR2-associated PME are early-onset
ataxia, action myoclonus and seizures, relative preserva-
tion of cognitive function until the late stages of the dis-
ease. GOSR2-associated PME is a rare disease with very
few cases reported so far [34, 35]. Most PME patients
are homozygous for a p.Gly144Trp mutation and de-
velop similar clinical presentations. Recently, more vari-
ants including c.491_493delAGA (p.Lys164del) and
c.491_493delAGA (p.K164del) have been reported [36,
37]. The syndrome was called ‘North Sea PME’ given the
fact that all patients originated from countries surround-
ing the North Sea [34]. It is the first time for GOSR2-as-
sociated PME reported in countries outside the area,
and both of c.146delA (p.Glu49AspfsTer25) and c.478-
16 T > A are novel variants. However, the pathogenicity
of splice-site variant c.478-16 T > A remains uncertain,
and further study such as qPCR is needed for functional
analysis. It was the first time for GOSR2 mutations re-
lated PME reported in Asia. Our study contributed to
expand the genotype of this condition.
The genetic causes remained unknown in eight chil-

dren. Their clinical features meet the diagnostic criteria
of PME. All eight children received trio-based WES, but
none of them were found with disease causing muta-
tions. All of the parents of the eight children did not
have mental and/or motor development delay or regres-
sion or epilepsy, and the CAG triple expansion were not
tested in them, which often be test when much family
members were affected such as DRPLA. Maybe the
whole genome sequencing could be used to find disease-
causing genes.

Conclusion
The seizure onset age of PME varies, it could be ranged
from infant to adult. PME is a group of neurogenetic dis-
eases with phenotypic and genotypic heterogeneity. Ac-
curate diagnosis is very challenging. In combination of
detailed clinical phenotype information, specific laboratory
results and various of genetic testing methods including
sanger sequencing of single gene, NGS panels of epilepsy,
trio-based WES and detection of CAG repeat number,
etiological diagnosis could finally be obtained. The NCL
was most common in PME related diseases. The novel
mutations in GOSR2 expanded the genotype of PME, and
this gene related PME are not only found in areas sur-
rounding the North Sea. The onset age could be before 3
years old for some children whose diagnosis are CLN1,
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CLN2, CLN7, SMA-PME, KCNC1 related PME, KCTD7
related PME, TBC1D24 related PME, and DRPLA.
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